摘要 — 我们提出了一种基于电荷准静态模型的显式小信号石墨烯场效应晶体管 (GFET) 参数提取程序。通过对 300 nm 器件进行高频(高达 18 GHz)晶圆上测量,精确验证了小信号参数对栅极电压和频率的依赖性。与其他只关注少数参数的工作不同,这些参数是同时研究的。首次将有效的程序应用于 GFET,以从 Y 参数中去除接触电阻和栅极电阻。使用这些方法可以得到提取小信号模型参数的简单方程,这对于射频电路设计非常有用。此外,我们首次展示了本征 GFET 非互易电容模型与栅极电压和频率的实验验证。还给出了测量的单位增益和最大振荡频率以及电流和功率增益与栅极电压依赖性的精确模型。
量子传感和量子信息处理利用量子优势(例如压缩态),以更高的精度对感兴趣的量进行编码并产生量子关联,从而超越传统方法。在谐振子中,产生压缩的速率由量子速度极限设定。因此,在实践中可以使用量子优势的程度受到创建状态所需的时间相对于不可避免的退相干速率的限制。或者,谐振子频率的突然变化将基态投射到压缩态,这可以绕过时间限制。在这里,我们通过光学晶格中原子的谐振频率的突然变化来创建原子运动的压缩态。基于此协议,我们展示了可用于检测运动的位移算子的快速量子放大。我们的结果可以加速量子门并实现嘈杂环境中的量子传感和量子信息处理。
在现代微波炉和MMWave通信系统的设计过程中,设计人员必须表征设备(晶体管,电容器,电感器等)在从DC附近到远远超出设计的工作频率的广泛频率。设备表征的过程生成了电路模拟过程中使用的模块,并且模型的准确性决定了模拟的准确性,因此,首次转弯成功的机会。用于模型精度的重要元素是对电路运行频率远远超出电路频率的设备的表征,在许多情况下,表征远远超过110 GHz。超宽宽带VNA,例如具有70 kHz至220 GHz单扫描功能的VectorStar™ME7838G,提供了行业领先的测量值,并启用了准确模型和电路模拟的最佳设备特性。
摘要 — 水下回声测深仪是水面和水下舰艇声纳套件不可或缺的一部分。这些系统通过提供船体龙骨和海底之间的实时距离来确保舰队的安全作业。本文我们报告了一种用于舰队舰艇的具有出色声学参数的浅水回声测深仪的设计和开发。原型回声测深仪的峰值发射电压响应 (TVR) 为 170 dB,接收电压灵敏度 (RVS) 为 –187 dBV/µPa,电阻抗为 193 Ω。此外,这种声学换能器的设计具有通过控制传感器几何形状来调整工作频率的灵活性。这种灵活性确保了对工作频率的控制和根据要求进行定制。关键词:浅水回声测深仪、PZT、单波束、声学匹配层、水文
摘要:在本文中,研究了三种典型的操作模式,即短路断层,负载变化和化学能量存储对光伏异步互连后区域功率网格的频率的频率,并以不同的穿透比为北部亨南省的功率电网,作为研究对象。发现,随着光伏穿透比的增加,系统频率的最大值和爆发幅度逐渐增加,并且河北河北的功率网系统变得越来越稳定。随着渗透率的增加,相应节点上系统频率的峰值逐渐增加,并且山谷值逐渐下降。随着负载的增加,频率曲线的峰值逐渐增加,山谷值逐渐下降。当光电子通过化学能量存储连接到网格时,在短路断层和负载变化操作过程中的系统稳定性显着改善。与存储前的相比,存储后系统的频率幅度减少到原始的大约十分之一。 与存储前的情况相比,当负载变化时,系统的频率幅度降低到原始的大约四分之一。相比,存储后系统的频率幅度减少到原始的大约十分之一。与存储前的情况相比,当负载变化时,系统的频率幅度降低到原始的大约四分之一。
1。Gomila M.等。“基于基因组的基因组分类法和S.频率的建议nov。和S. de-Gradans sp。nov。并修改了S. perfectoma和氯替氏菌的描述”。微生物10.7(2022):1363。
•响应于网格频率的增加或减少,将BES充电或放电,并将其保持在预设的限制内(49.5 - 50.5Hz)。•BES可以证明快速响应以满足初级(10-30s),次级(30s - 30分钟)和高(10s)频率响应。
• 信号频率主要在0.1到1.5GHz范围内 • 1GHz占主导地位 • 一端的波形(电荷)的幅度和面积不同,但两端的总和保持不变 • 在频谱图中,P1-P7之间频率的幅度没有明显差异
对于 TACAN 和 DME,仅指示与 X 不同的模式 对于 TACAN 和 DME,仅指示与 X 不同的模式 TACAN 通道(距离测量单元)与 VOR 频率的配对 P、R 和 DP、R 和 D 区域