摘要:可再生能源耦合制氢技术可在一定程度上克服可再生能源随机性、间歇性的弱点,但由于可再生能源发电机组与主网长距离、反向分布,高比例电力电子制氢系统与电网互联时存在振荡不稳定的风险。首先,建立电力电子制氢系统阻抗模型,分析与电网互联的制氢系统振荡特性。其次,分析电解水制氢系统对多能源系统稳定性的影响,研究输入功率波动、产氢速率变化引起的不稳定问题。然后,提出一种基于功率分配的可再生能源制氢系统振荡抑制策略,用于增强电解水制氢系统多能源系统的稳定性。最后,通过建立可再生能源电解水制氢实验模拟系统。验证了不同可再生能源出力波动、不同系统阻抗条件下系统频率稳定性,仿真结果表明,提出的基于功率分配的多能源制氢控制方法能够保证可再生能源出力波动下系统的稳定性。
摘要。风能和光伏发电等可再生能源具有动态特性,具有明显的间歇性、固有的随机性和有限的输出支持,对微电网系统的频率稳定性有重大影响。尽管研究仍在进行中,但对提高微电网频率稳定性的控制措施仍然缺乏全面的了解。本文通过总结国内外微电网频率稳定性控制策略的进展来解决这一空白。具体来说,它研究了微电网的运行状态和相关的频率稳定性问题,并阐述了保持频率稳定性的各种方法。本文提出了提高频率稳定性的创新控制措施,包括改进主从控制、下垂控制、锁相环和虚拟同步发电机 (VSG) 技术,特别是在孤岛模式和并网模式之间的转换期间。研究结果证明了这些增强控制策略在保持频率稳定性方面的有效性,并最后提出了该领域未来的研究方向。
维持发电和需求之间的电力平衡被普遍认为是将系统频率保持在合理范围内的关键。这对于基于可再生能源的混合动力系统 (HPS) 尤其重要,因为此类系统更容易发生中断。本文提出了一种著名的改进型“分数阶比例积分双导数 (FOPIDD2) 控制器”作为创新型 HPS 控制器,以克服这些障碍。推荐的控制方法已在风能、再热热能、太阳能和水力发电以及电容式储能和电动汽车等电力系统中得到验证。通过将改进后的控制器与常规 FOPID、PID 和 PIDD2 控制器进行比较,可以评估其性能。此外,使用新设计的算法术语鱿鱼游戏优化器 (SGO) 优化了新构建的 FOPIDD2 控制器的增益。将控制器的性能与灰狼优化器 (GWO) 和水母搜索优化等基准进行了比较。通过比较最大频率下冲/过冲和稳定时间等性能特征,SGO-FOPIDD2 控制器优于其他技术。分析并验证了所提出的 SGO 优化 FOPIDD2 控制器在各种负载场景和情况下承受电力系统参数不确定性影响的能力。结果表明,无需任何复杂设计,新控制器就可以稳定工作并以适当的控制器系数调节频率。
传奇csac = microchip sa.45s csac tcsac = teededene csac(初步)cpt = chengdu spaceon cpt nac = accubeat rb nac1 iqrb1 = iqrb1 = iqd iqd iqrb-1 SRS PRS10 LP = Spectratime low profile Rb AR133A = Accubeat AR133A Rb miniRAFS = Spectratime miniRAFS IQRB2 = IQD IQRB-2 5669 = FEI FE-5669 Rb FS725 = SRS FS725 RAFS = Excelitas space RAFS iRAFS = Spectratime iSpace RAFS CsIII = Microchip CBT 4310B CsIII FEI RAFS = FEI RAFS 5071A = Microchip 5071A CBT OPC = Chengdu Spaceon TA1000 OPC c-Rb = Spectradynamics cold Rb c-Rb PHM = T4Science pHMaser 1008 mu = Muquans cold-atom MuClock (preliminary) MHM = Microchip MHM 2010 H Maser Vremya = Vremya VCH-1003M H Maser T4 = T4Science Imaser-3000 H Maser
摘要:逆变供电可再生能源 (RES) 在现代能源系统中的渗透率很高,导致系统惯性响应降低。旋转惯性响应的降低与同步发电有关,可能会导致电力扰动后频率响应恶化。本文研究了沙特阿拉伯王国 (KSA) 电网的频率稳定性。它包括对 KSA 电网不断变化的能源格局的描述,以及对逆变供电 RES 的高渗透水平对 KSA 电网动态行为的影响的研究。通过使用 MATLAB/Simulink 仿真软件模拟未来 KSA 电力系统的案例研究,研究了 RES 的影响。在峰值和基本负载条件下,使用各种 RES 水平评估了 KSA 电力系统的频率稳定性。模拟结果表明,RES 的高渗透水平极大地影响了系统的频率响应,尤其是在非峰值条件下。此外,还讨论了电池储能系统 (BESS) 对补偿系统惯性响应降低的重要性。结果显示了聚合 BESS 对增强 KSA 电网系统频率控制的有效性。
捕获 40 Ca + 离子的量子信息科学实验需要波长为 729 nm 的窄线宽激光器来驱动 4 2 S 1 / 2 和 3 2 D 5 / 2 之间的量子比特跃迁。本文介绍了一种钛宝石激光器,该激光器使用 Pound-Drever-Hall 技术将频率稳定到波长为 729 nm 的参考腔。激光线宽是通过与其他频率稳定激光器的拍频测量和对单个捕获 40 Ca + 离子的 Ramsey 实验来测量的。最窄的测量线宽 (FWHM) 是通过拍频测量获得的,在测量时间为 1 s 时为 4.2(17) Hz,代表了钛宝石激光器线宽的上限。在参考腔下方安装隔振板后实现了这个最窄的线宽。对已安装的光纤噪声消除和激光强度稳定装置的分析表明,光纤和激光强度噪声不会限制最窄的测量线宽。还利用其他频率稳定激光器的拍频测量来获得稳定激光器频率漂移的值,测量结果为 -371(3) mHz/s。
基于逆变器的可再生生成的抽象大规模整合会导致功率系统的自然惯性减少。因此,与具有高惯性旋转同步发电机的传统系统相比,未来电力系统的动力学将更敏感。此开发是频率稳定性的潜在风险,需要利用快速控制的资源来动态频率稳定性支持。同时,需要开发基于逆变器的资源的新同步和控制方法,以确保未来电力系统的频率和同步稳定性。在本文中,基于基于逆变器的资源的网格形成和支持的基于频率锁定环的控制和网格同步可改善小型高压网络的频率稳定性。使用PSCAD软件进行模拟,主要重点是电池能量存储,以评估其位置的效果,增强的控制方案以及操作模式对频率稳定性的影响。在研究中,在电池电池充电和放电期间研究了电池存储位置,主动功率响应相关的控制参数,通信时间延迟和输入频率确定的影响。基于模拟,还提出了新的解决方案,以提高具有通用电网电池储藏的未来变量惯性电源系统的频率稳定性。
摘要:电池监控系统(BMO)对于监视电池在运行时提供和吸收能量的状况至关重要,并同时确定实现长电池寿命的最佳限制。所有这些都可以通过测量电池参数并增加电池电量(SOC)和健康状况(SOH)来完成。来自NASA的电池数据集用于评估。在这项工作中,采用了梯度向量来从电池中获取能源供应模式的趋势。此外,采用了支持向量机(SVM)以获得精确的电池精度指数。这与多项式回归的使用一致;因此,点V1和V2作为正常使用阶段的边界。此外,还对电池从分类中成功提取的时间长度进行了时间长度分布的测试。所有这些阶段都可以用于计算使用过程中电池降解速率,以便可以通过不断比较值在实际情况下应用此策略。在这种情况下,使用电压梯度,SVM方法以及建议的多项式回归,MAPE(%),MAE和RMSE可以在电池值图中获得分别为0.3%,0.0106和0.0136的电池值图。使用此误差值,可以获得电池的SOC值的动力学,并且可以通过避免使用电压流量阶段来通过较短的使用时间来解决SOH问题。
低惯性孤立电力系统面临着电力波动的弹性问题。风能和太阳能光伏等可再生能源的整合进一步推动了这一问题的界限。可再生能源份额的提高需要更好地评估电力系统的稳定性,以避免严重的安全和经济后果。因此,考虑频率稳定性要求和分配适当的旋转备用成为电力系统长期规划和运营管理中至关重要的主题。本文提出了动态频率约束,以确保在由于阵风或云层通过等原因造成的短期电力变化期间的弹性。案例研究中举例说明了所提出的约束的使用,约束被集成到混合整数线性规划算法中,用于确定孤立工业工厂中太阳能光伏和电池储能资源的最佳容量。本案例研究的结果表明,如果忽略频率约束,能源平准化成本和碳排放的减少量可能分别被高估 8.0% 和 10.8%。使用案例研究的时域模拟验证了所提出的最佳定型方法。结果表明,该最佳系统在最坏情况下是频率稳定的。