大地板安装的电池组的现实振动测试,有时称为可充电储能系统(RESS),用于电池电动汽车(BEV)对于开发安全的新电池结构很重要。另一方面,实验室中最坏情况环境的现实复制的要求通常要求昂贵且复杂的基础架构。由于复杂性的增加而导致的环境复制质量和重要的成本驱动力的关键因素是设备必须能够复制所需的频率范围。贡献分析了第一个预测试活动中的数据,以证明为测试设备推导频段要求的可行过程。这里使用的关键方法是疲劳损伤光谱(FDS)分析振动可能导致某些感兴趣的失败机理的潜在损害,尤其是通过相应的双重量化量的“加权”,对应力幅度的相应双重量化依赖性而不是发生的负载周期。这可以很好地评估在某些频率范围内可以在所需的测试设备上选择有理合理且具有成本效益的选择。
鉴于 CEPT 国家对相关频率范围的使用和要求,与 CEPT 国家军事当局进行联络也是必要的。尽管没有一个代表所有 CEPT 成员国的单一军事代表机构,但北大西洋公约组织 (NATO) 有一个联合民用/军用频率协议(NATO 联合民用/军用频率协议 (NJFA),公开披露摘录,2017 年 2 月 14 日),北约国家将其视为无线电频率规划和政策制定的基础贡献。CEPT 还建立了一个论坛,让所有 CEPT 国家的民用和军用频率管理人员可以会面。这个论坛,即民用军事会议,考虑了协调军事使用频谱的要求,以满足北约和非北约 CEPT 国家的需求,并邀请 WGFM 考虑采取后续行动。军事要求因活动和国家而异。在一些国家,国家要求可能高于 ECA 表中所示的要求或北约和北约成员国为军事用途特别协调的要求。
图1相位振幅耦合分析。(a)在收听duple/triple节奏(顶部)时,脑电图(底部)的频谱。(b)最高数字在2-30 Hz的频率范围内呈现了六个基础序列过程中的功率调制。底部图显示了3 Hz窄带滤波后的频率范围7-12 Hz(基线校正)的平均功率波动,以更好地可视化。(c)PAC强度(左)强度的地形分布以及耦合的首选阶段(右;绿色代表Alpha功率阶段引导刺激阶段)在频率范围7-12 Hz中与BEAT(由模拟的3 Hz正弦曲线建模的频率范围7-12 Hz)的功率平均。点代表簇,其中PAC与替代数据相比具有重要意义。
摘要 - 已提出了无线贝叶斯神经网络(WBNNS),以解决能源效率和设计复杂性的问题,以在资源约束边缘设备中进行培训和分类。通过引入热激活的DNA致动器和磁性旋转旋转振荡器(STOS),WBNN能够从小型数据集中学习并解决过度拟合的问题,以实现准确的分类结果。为了有效地生成高斯变量,这项工作提出了电磁耦合的stos,可以固有地创建可编程频谱分布,以用于贝叶斯神经网络(BNNS)的变异推断。具体而言,通过使用最大量的高斯变量,与BNN进行单层将DNA折纸与STO进行单层整合的纳米级异质结构,以执行乘法和积累(MAC),包括:1)具有加权偏置电流的STOS,以将概率分布和生成振动范围设置为频率范围,通过频率进行频率范围,通过频率进行频率范围,以使oscilly oscill osscill频率通过频率进行频率范围。 (2)可以选择性地整合来自各种STO的无线信号以将接收到的能量转换为可编程磁场的DNA折纸。仿真结果表明,所提出的WBNN可以在消耗625 µW时获得高于96%的精度。
Microchip 的 IGBT 产品为各种高压和高功率应用提供高质量解决方案。开关频率范围从传导损耗最小的 DC 到极高功率密度开关模式电源 (SMPS) 应用的 150 kHz。下图显示了每种产品类型的频率范围。每种 IGBT 产品都代表了最新的 IGBT 技术,为目标应用提供了最佳的性能/成本组合。共有六个产品系列,采用三种不同的 IGBT 技术:非穿通 (NPT)、穿通 (PT) 和场截止。
图 1.1.2 显示了 6G 的潜在频谱带和可能影响不同频谱相关方面的关键技术。图 1.1.2 中显示的频段是 6G 的潜在候选频段,因为目前没有指定用于 6G 的频段。7 至 24 GHz 范围可以利用大规模多输入多输出 (MIMO) 技术来确保良好的覆盖范围,相对于 3 至 5 GHz 之间的传统频率提高容量,并为上层毫米波和太赫兹 (THz) 频率范围提供控制平面。另一方面,毫米波和太赫兹频谱可用于提供高数据速率并实现精确的定位和感知。智能中继器和可重构智能表面 (RIS) 等技术可以在改善上层毫米波和太赫兹频率范围的覆盖范围方面发挥重要作用。这些频率范围还可实现高分辨率和精确的传感/定位应用。无蜂窝 MIMO 使网络经济有利于在频谱的 mmWave 部分进行部署。