大脑活动的非振荡测量,例如频谱斜率和 Lempel – Ziv 复杂度,受到许多神经系统疾病的影响,并受睡眠调节。多种频率范围,特别是宽带(涵盖全频谱)和窄带方法,已被特别用于估计频谱斜率。然而,选择不同频率范围的影响尚未详细探讨。在这里,我们评估了睡眠阶段和任务参与(休息、注意力和记忆)对 28 名健康男性人类受试者(21.54 ± 1.90 岁)在窄带(30 – 45 Hz)和宽带(1 – 45 Hz)频率范围内的斜率和复杂性的影响,采用受试者内设计,为期 2 周,每个受试者记录三个夜晚和白天。我们努力确定不同的大脑状态和频率范围如何影响斜率和复杂性,以及这两个测量结果的比较情况。在宽带范围内,斜率变陡,复杂性从清醒状态到 N3 睡眠持续下降。然而,窄带斜率最能区分 REM 睡眠。重要的是,在清醒状态下,斜率和复杂性在任务之间也有所不同。虽然窄带复杂性随着任务参与而降低,但斜率在两个频率范围内都趋于平坦。有趣的是,只有窄带斜率与任务表现呈正相关。我们的结果表明,斜率和复杂性是清醒和睡眠期间大脑状态变化的敏感指标。然而,与 Lempel – Ziv 复杂性相比,频谱斜率能提供更多信息,可用于更多种类的研究问题,尤其是在使用窄带频率范围时。
SS2030 是一种主动船体安装声纳,主要用于反潜战 (ASW)。它具有在沿海水域运行的特殊能力,还具有使其适合探测鱼雷和水柱中的小物体的功能。工作频率范围为 20 - 30 kHz。SS2030 还提供被动模式。
基于周围亮度的屏幕亮度。光传感器必须能够检测到广泛的频率。传感器可以与1.82 x 10 -19 j至5.71 x 10 -19 J的光子能反应以创建移动电子。传感器对传感器敏感的频率范围是多少?
解决方案:频率范围从 10 GHz 到 200 GHz 以上的多频(多普勒)雷达的组合可以表征从重降水颗粒到小尺寸冰晶的特征。加入 G 波段(1.5 毫米)对三个领域非常有益:边界层云、卷云和中层冰云以及降雪。
高速和宽频频率分隔线被广泛用于正交信号生成[1,2],时间间隔的THA和ADC系统[3,4,5],以及其他高速通信[6]。到目前为止,已经报告了基于不同拓扑和过程的许多分隔线。尤其是INP DHBT具有更高的击穿电压和相同尺寸的设备的频率性能更好[7,8],这意味着INP DHBT是高速分隔电路的更好选择。但是,电路的工作频率范围不会超过与设备过程相关的切割频率f t的一部分[9],这是电流模式逻辑(CML)划分器的工作频率[9,10]。为了提高分隔电路的高频电量,应提高效率以增加具有相同f t的设备的工作频率的利用。已经发表了许多增强技术,以扩展频率分隔符的工作频率范围,例如电感峰[9、11、12、13],分裂固定载荷[14、15、16],不对称闩锁[17],动态频率
L3HARRIS RF-3082-AT001下一代交叉的Yagi卫星天线提供完整的双链MUOS和Legacy UHF SATCOM。为快速部署和高增益辐射模式而设计,天线覆盖了240至380 MHz频率范围。它可以折叠起来,并轻松适合轻巧的小体积随身携带袋。
AAS 有源天线系统 AAU 有源天线单元 AC 交流电 BCCH 广播控制信道 BH 忙时 BS 基站 BSC 基站控制器 BTS 基站收发站 CA 载波聚合 CATR 紧凑型天线测试范围 CCE 控制信道元素 CCH 公共信道 CCPCH 公共控制物理信道 CP 循环前缀 CPICH 公共导频信道 CS 电路交换 DC 直流 DL 下行链路 DPCH 专用物理信道 DUT 被测设备 EDGE 增强数据速率 GSM 演进 EIRP 等效全向辐射功率 EPRE 每个资源元素的发射功率 FDD 频分双工 FL 满载 FR1 频率范围 1(450 - 6 000 MHz),为 NR 定义 FR2 频率范围 2(24 250 - 52 600 MHz),为 NR 定义 GERAN GSM/EDGE 无线接入网 GP 保护期 GSM 全球移动通信系统 GUM 指南测量不确定度的表达
摘要 — 稳态视觉诱发电位 (SSVEP) 因其众多优点而成为脑机接口 (BCI) 中最广泛使用的模式之一。然而,由于 SSVEP 中谐波的存在和响应频率范围有限,因此很难在不牺牲接口其他方面或对系统施加额外限制的情况下进一步扩大目标数量。本文介绍了一种用于 SSVEP 的新型多频刺激方法,并研究了其有效增加呈现目标数量的潜力。所提出的刺激方法是通过叠加不同频率的刺激信号获得的,具有尺寸效率高、允许单步目标识别、对可用频率范围没有严格限制、适用于自定步调的 BCI,并且不需要特定的光源。除了刺激频率及其谐波之外,诱发的 SSVEP 波形还包括刺激频率的整数线性组合的频率。使用仅以频率和谐波为参考的典型相关分析 (CCA) 解码从九名受试者收集的 SSVEP 的结果也证明了在基于 SSVEP 的 BCI 中使用这种刺激范式的潜力。
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信