对于 N 的数据集,结果表明 F/F S 的比率必须具有等效比率 k 0 /N,该比率为有理数。如果不满足此条件,则会出现频率区间的模糊。DAS 系统剩下三个选项。首先,它可以使用窗口补偿非相干采样引起的频率伪影。但是,如果 DAS 系统的寄存器和计算能力有限,则非相干采样的补偿只能是微不足道的。第二种选择是让 DAS 系统固定系统的采样频率,计算连续波的频率,从而得到等效比率 F/F S = k 0 /N,该比率为有理数,然后将输入连续波调整到计算出的频率。第三种选择是让 DAS 系统固定连续波频率,计算系统的采样频率,得到合理的等效比 F/F S = k 0 /N,并将采样频率调整为计算出的频率。后两种选择是大多数 DAS 系统的实用方法。
基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
摘要 — 快速稳定锁相环 (PLL) 在许多需要快速获得稳定频率和相位的应用中起着关键作用。在现代通信标准中,这些 PLL 被广泛用于确保精确符合动态资源分配要求。在处理器中,这些 PLL 管理动态电压频率缩放。此外,快速稳定 PLL 加快了复杂电子雷达装置中频谱的扫描速度,这对成像和扫描雷达应用特别有利。这些 PLL 所表现出的快速响应也被用于量子技术,满足了对精确频率调整以有效操纵量子比特状态的迫切需求。本文将实现快速稳定 PLL 的策略主要分为五大类技术:增强型相位频率检测、混合多子系统、VCO 启动、变速和查找表或有限状态机。本文探讨了这些技术的基本操作原理,并介绍了文献中报道的每种方法的最佳稳定时间。最后,将根据这些技术的品质因数 (FoM)、稳定时间和调谐范围对采用这些技术的架构进行评估。
摘要:美国心脏协会儿科高级生命支持指南 2020 年重点更新遵循国际复苏联络委员会儿科生命支持工作组在 2018 年和 2019 年进行的系统评价。它与国际复苏联络委员会的持续证据审查流程保持一致,当国际复苏联络委员会根据新发表的证据完成文献审查时,将发布更新。本更新提供了以下方面的证据审查和治疗建议:儿童心脏骤停的高级气道管理、使用高级气道进行持续心肺复苏 (CPR) 期间的呼吸频率调整、在放置高级气道的情况下优先使用带袖套的气管插管、对不可电击心律的患者尽早使用肾上腺素、儿童心脏骤停的体外心肺复苏、心脏骤停后护理期间的儿童目标体温管理以及心脏骤停中的纳洛酮。写作小组分析了针对每个主题发表的系统评价和原始研究。
步态适应对新的环境,设备或身体的变化,可以由能量消耗的持续优化驱动。然而,能量优化是否涉及隐式处理(自动发生,并以最少的认知注意力发生),显式处理(有意识地使用邀请策略有意识地发生)或两者结合尚不清楚。在这里,我们使用了双任务范式来探测在步行过程中能量优化中隐式和明确过程的贡献。为了创建我们的主要能量优化任务,我们使用了下LIMB外骨骼将人们的能量最佳步骤频率转移到低于正常优选的频率。我们的次要任务旨在从优化任务中引起明确的关注,是听觉音调歧视任务。我们发现,添加此次要任务并不能阻止步行过程中的能量优化。我们的双任务实验的参与者将其步骤频率调整为Optima的量,并以与我们以前的单任务实验中的参与者相似的速度。我们还发现,当参与者适应能量Optima时,在语调歧视任务上的表现并没有恶化。当外骨骼改变能量最佳步态时,精度得分和反应时间保持不变。调查回答表明,双重任务参与者在很大程度上不知道适应过程中对步态的变化,而单任务参与者更加了解他们的步态变化,但并未利用这种明确的意识来改善步态适应性。共同表明能量优化涉及隐式处理,从而使注意力资源可以针对步行过程中其他认知和运动目标。
摘要 — 在生产高性能计算 (HPC) 数据中心,许多因素(包括工作负载计算强度、冷却基础设施故障和使用节能冷却)都会大幅提高 CPU 温度。与 CPU 热设计相关的研究表明,工作温度的细微变化会严重影响 CPU 的寿命、耐用性和性能。因此,监控和控制 CPU 的工作温度至关重要。在本研究中,我们设计了一种自动且连续的 CPU 热监控和控制方法来维持和控制健康的 CPU 热状态。本研究利用 Redfish 协议监控 CPU 温度,并使用动态电压频率调整来控制温度。我们开发了一个参考实现,并使用 150 个 Raspberry Pi3 节点集群评估了我们的方法。我们在不同场景中执行了广泛的 CPU 热分析。我们分析了 CPU 在室温下 100% 负载下达到最高温度的速度。根据我们的实验,在最低和最高 CPU 频率配置下,100% 负载的 CPU 的温度分别可升至 ∼ 72°C (161.6°F) 和 ∼ 86°C (186.8°F)。我们分析了在八种温度配置下应用热控制对 CPU 的热和频率缩放行为的影响。我们观察到,在较低温度配置(例如 70°C (158°F))下应用热控制是修复过热 CPU 的更好配置。根据所提出的模型,在正常温度下运行的 CPU 将消耗相对较少的能量,提供更高的性能并增强其耐用性。索引术语 —CPU 温度、自动化、HPC、数据中心、Kraken、动态电压和频率缩放、省电、性能、动态热控制、Redfish、DVFS、Kraken、计算集群动态热控制、动态电压和频率缩放、数据中心自动化、高性能计算
摘要由PARP抑制剂(PARPI)引起的DNA捕获多-ADP-核糖聚合酶(PARP)触发急性DNA复制应激和合成杀伤力(SL)在BRCA2缺陷型细胞中。因此,DNA损伤被接受为BRCA2缺陷细胞中SL的先决条件。相反,我们在这里表明,抑制BRCA2缺陷型细胞中的岩石独立于急性补充应力触发SL。此类SL在细胞因子衰竭引起的多倍体和双核之前。这种初始有丝分裂异常之后是其他M相缺陷,包括后期桥和异常有丝分裂数字,与多极纺锤体,超纯中心体和多核核酸相关。sl还通过抑制citron rho Icteracting激酶触发,这是另一种与岩石相似的调节细胞因子的酶。一起,这些观察结果表明,细胞因子衰竭会触发BRCA2缺陷细胞中有丝分裂异常和SL。此外,通过早期有丝分裂抑制剂1(EMI1)耗竭来预防有丝分裂进入,增强了用岩石抑制剂处理的BRCA2缺乏细胞的存活,从而增强了BRCA2缺乏细胞中M期与细胞死亡之间的关联。这种新颖的SL与PARPI触发的SL不同,并发现有丝分裂是BRCA2缺陷型细胞的跟腱。