基于矢量调制器的低 RMS 相位误差移相器,适用于 KA 波段应用 Melih Gokdemir;Alessandro Fonte;Giandomenico Amendola;Emilio Arnieri 和 Luigi Boccia 用于物联网终端的 2.4GHz 电小天线 Mahmoud Abdallah 和 Al P. Freundorfer;Yahia Antar 圆极化低成本物联网电小天线 Mahmoud Abdallah 和 Al P. Freundorfera Antar CMOS 小数分频全数字锁相环 (ADPLL) 的设计和仿真 Tangus Koech 用于低于 6 GHz 5G 物联网应用的紧凑型宽带低剖面单极天线 Said Douhi 使用异构滤波器为 5G 和 WiMAX 创新设计紧凑型双工器 Soufiane Achrao;Dahbi El Khamlichi;Alia Zakriti;Moustapha El Bakkali; Souhaila Ben Haddi 使用 RFID 技术的室内定位方法比较研究 Badr Jouhar;Abdelwahed Tribak;Jaouad Terhzaz;Tizyi Hafid 微波辐射处理对野生胭脂虫 Dactylopius Opuntiae 死亡率和生育力的影响 Fatima Zahrae EL Arroud、Karim EL fakhouri、Youness Zaarour、Chaimae Ramdani、Mustapha El Bouhssini;Hafid Griguer 基于耦合线滤波器的宽带低噪声放大器 (LNA) 的设计,带有陷波滤波器以抑制不需要的频率 Faycal El Hardouzi;Mohammed Lahsaini 印刷嵌入式天线的设计、制造和验证 Julen Caballero Anton;Jose M Gonzalez-Perez;Izaskun Bustero;Marta Cabedo-Fabrés;Leire Bilbao; Jon Maudes 纳米卫星可靠天线部署系统的研究与设计 Sara Essoumati;Oulad said Ahled;Gharnati Fatima 用于 C、X 和 Ku 波段的极化捷变频率选择表面 (FSS) Shahlan Ahmad, Sr.;Adnan Nadeem;Nosherwan Shoaib 使用基于 k 折交叉验证的 ANN 设计和优化用于 28 GHz 5G mmWave 应用的十字形槽 UWB 微型贴片天线 Lahcen Sellak;Samira Chabaa;Saida Ibnyaich、Asma Khabba;Abdelouahab Zeroual;Atmane Baddou 使用基片集成波导 (SIW) 和 WCIP 方法设计和建模铁氧体循环器 Noemen Arroussi Ammar 13:30-15:00 – TLAS III 室
稳态视觉诱发电位 (SSVEP) 是一种与周期性视觉刺激频率锁定的大脑活动( Zander 等人,2009 年)。与其他模式(例如运动想象 (Nicolas-Alonso and Gomez-Gil, 2012))相比,SSVEP 具有相对较高的准确度和信息传输率,并且对用户所需的培训最少,因此被广泛应用于脑机接口 (BCI) 中。标准的基于 SSVEP 的 BCI 在工作空间中包含多个刺激,每个刺激以不同的频率闪烁,而脑电图 (EEG) 主要从枕叶测量。测得的 EEG 反映了用户视觉上关注的刺激的频率,以及该频率的谐波。谐波的存在为解码过程提供了更多的参考点,但也给基于 SSVEP 的 BCI 的设计带来了额外的复杂性和挑战。例如,如果同一个 BCI 中对两个不同的刺激同时使用某个频率及其谐波,那么在记录的这两个刺激的脑电图中就会有共同的频率,这可能会混淆解码算法。因此,在文献中,一些研究有意避免在刺激中使用具有共同谐波的频率(Volosyak 等,2009;Chen 等,2015)。这个谐波问题,加上人脑对周期性视觉刺激的响应频率范围有限(Regan,1989),限制了标准基于 SSVEP 的 BCI 中可使用的唯一频率的数量;即,低信噪比脑电图记录和小的频率分离会损害解码性能。因此,在需要大量唯一频率来标记所有目标的场景中使用标准基于 SSVEP 的 BCI 具有挑战性。为了解决这个问题,已经引入了多频刺激方法,在每个刺激中使用多个频率,其中两个频率(双频)是最广泛使用的模态(Shyu 等,2010;Zhang 等,2012;Chen 等,2013;Hwang 等,2013;Kimura 等,2013;Chang 等,2014;Mu 等,2021a)。然而,这些研究主要集中于介绍多频刺激方法,并没有探讨频率选择方法。随着用于标记每个目标的频率数量的增加,在每个刺激或目标上使用多个频率可以成倍增加可以在工作空间中表示的目标数量。多频刺激产生复杂的周期性刺激信号,从而触发更复杂的 SSVEP 反应。在 Mu 等人的研究中, (2021a)表明,多频率 SSVEP 响应不仅包含输入频率及其谐波,还包含输入频率的整数线性组合,这些组合具有在记录的 SSVEP 中更可能观察到的低阶相互作用。注意,相互作用的顺序定义为