数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 驯服频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控 (CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
1.1 背景 ................................................................................................................ 1 1.2 典型的同步方案 ................................................................................................ 3 1.2.1 符号定时恢复 .............................................................................................. 5 1.2.2 载波频率偏移恢复 ...................................................................................... 6 1.2.3 载波相位恢复 ............................................................................................. 6 1.3 使用最大似然法进行同步 ............................................................................. 7 1.4 下限估计 ............................................................................................................. 9 1.5 同步要求及其对接收机 BER 性能的影响 ............................................................. 13 1.6 根据实现方法进行分类 ............................................................................. 22 1.7 FF 和 FB 同步系统之间的等效性 ............................................................. 25 1.8 常用的同步方法 ............................................................................................. 25 1.8.1 蜂窝/PCS 二进制相移键控 (PSK) 系统 ............................................................. 26 1.8.2 频移键控 (FSK) 系统 ...................................................................... 27 1.8.3 最小频移键控 (MSK) 系统 ...................................................................... 27 1.8.4 连续相位调制 (CPM) 系统 ...................................................................... 28 1.8.5 正交频分复用 (OFDM) 系统 ............................................................. 28 1.8.6 码分多址 (CDMA) 系统 ............................................................................. 29 1.9 问题陈述 ...................................................................................................... 32 1.1 0 研究方法 ...................................................................................................... 3 3 1.11 贡献 ............................................................................................................. 34 1.12 论文概述 ............................................................................................................. 35 1.13 结论 ............................................................................................................. 39
特别报告附录(分布 D)中包含以下附录:附录 II-E – 方法 #1:双相频移键控方法附录 II-F – 方法 #2:双相电平 PCM/FM 技术 (CPFSK)附录 II-G – 方法 #3:增强高字母表附录 II-H – 方法 #4:增强安全 FTS 技术附录 II-I – 方法 #5:非相干 3/13 音调消息附录 II-J – 方法 #6:伪随机码技术附录 II-K – 方法 #7:可扩展 3-DES 加密 BPSK 技术附录 III-F – EFTS 范围调查报告附录 III-G – 调制格式选择比较分析附录 III-H – 消息格式和协议操作影响分析附录 IV-G – 应用于 EFTS 的范围操作场景/程序附录 IV-H – 机载飞行终止系统调查报告
在特别报告补编(分布 D)中可以找到以下附录: 附录 II-E – 方法 #1:双相频移键控方法 附录 II-F – 方法 #2:双相电平 PCM/FM 技术(CPFSK) 附录 II-G – 方法 #3:增强型高字母表 附录 II-H – 方法 #4:增强型安全 FTS 技术 附录 II-I – 方法 #5:非相干 3/13 音调消息 附录 II-J – 方法 #6:伪随机码技术 附录 II-K – 方法 #7:可扩展 3-DES 加密 BPSK 技术 附录 III-F – EFTS 范围调查报告 附录 III-G – 调制格式选择比较分析 附录 III-H – 消息格式和协议操作影响分析 附录 IV-G – 应用于 EFTS 的范围操作场景/程序 附录 IV-H – 机载飞行终止系统调查报告
摘要 无论是 GEO 还是 LEO 系统,卫星通信都主要用于语音、视频和数据通信。更多流量的需求必然会提高卫星的数据速率,而这可以通过选择适当的调制方案来实现。目前,地面系统也是无线的,包括直播卫星 (DBS)、电视服务、无线局域网 (WLAN)、全球定位卫星 (GPS)、点对点或点对多点的射频识别系统。现代通信系统是数字的;而不是模拟的,以便具有更好的抗噪能力。此外,由于频谱可用性有限,调制方案的选择对于信号的忠实传输起着重要作用。数字通信可分为幅移键控 (ASK)、频移键控 (FSK)、相移键控 (PSK),而对于更高比特率,则采用相移键控 (PSK),例如 BPSK、QPSK 和 OQPSK。本文概述了卫星通信中采用的各种调制方案,以及其选择标准和误码率概念。关键词:调制方案、通信系统、噪声、射频
在无线传感器网络中,多级量化是必要的,以便在最小化传感器功耗和最大化融合中心 (FC) 的检测性能之间找到一个折衷点。以前的方法一直在这种量化中使用距离度量,例如 J 散度和 Bhattacharyya 距离。这项工作提出了一种不同的方法,该方法基于两种假设下的传感器输出的最大平均熵,并在基于 Neyman-Pearson 标准的分布式检测方案中利用该方法检测点源。当传感器输出在 FC 上无误差可用时,以及当使用非相干 M 元频移键控通信通过瑞利衰落信道传输基于 MAE 的多级量化传感器输出时,都对所提出的最大平均熵 (MAE) 方法在量化传感器输出方面的接收器操作特性进行了评估。模拟研究表明,在无误差融合和已纳入无线信道影响的情况下,MAE 都是成功的。正如预期的那样,性能随着量化级别的提高而提高,并且六级量化接近非量化数据传输的性能。