摘要人类卵巢卵泡的体外模型将极大地有益于女性繁殖的研究。卵巢发育需要生殖细胞和几种类型的体细胞的结合。其中,颗粒细胞在卵泡形成和对卵子发生的支持中起关键作用。存在有效的方案来产生人类诱导的多能干细胞(HIPSC)的人类原始生殖细胞样细胞(HPGCLC),但产生颗粒细胞的一种方法是难以捉摸的。在这里,我们报告说,两个转录因子(TFS)的同时过表达可以将hipsc的分化指向颗粒样细胞。我们阐明了几种与颗粒相关的TF的调节作用,并确定NR5A1的过表达和Runx1或Runx2足以生成类似颗粒状的细胞。我们的颗粒状细胞具有类似于人类胎儿卵巢细胞的跨文章组,并概括了包括卵泡形成和类固醇生成在内的关键卵巢表型。与HPGCLC聚集时,我们的细胞形成卵巢样类器官(卵形),并支持从迁移到性腺阶段的HPGCLC发育,这是通过诱导DAZL表达来衡量的。该模型系统将为研究人类卵巢生物学提供独特的机会,并可以开发女性再生健康的疗法。
功能1。广泛的人机接口:管理系统的概述选项卡提供了直观,全面的图形接口。它提供了整个安装及其所有组件的颜色编码的视觉表示形式,从而允许进行实时状态监视。该接口设计用于直接,实时控制,其字段用于调整食谱参数并显示电流值。2。有效的控制:自动启动和自动停止执行预编程步骤,以确保机器以正确的顺序启动。步骤开始和步骤停止提供颗粒状控制,根据需要启动或停止单个步骤。3。灵活的管理选项:该系统提供三个用户级别 - 操作员,维护和程序员,每个级别都有独特的访问,以进行有效的操作,配置和测试。4。实时连接监视:系统提供有关PLC连接的即时视觉反馈,以确保无缝操作和立即检测。5。详细的组件见解:概述屏幕上的可单击对象打开弹出窗口,提供有关电动机,阀门和控制器的深入信息。此功能允许手动控制各个组件。6。动态趋势分析:管理系统为众多变量提供可配置的趋势曲线和图形,提供温度,速度和保留时间等见解。此功能有助于监视系统性能并做出明智的决定。7。事件记录仪:系统记录其事件,使当前过程参数与过去的过程参数进行回溯和比较,以进行全面的过程审查和分析。历史数据对于证明符合各种标准也很有价值。
为完成自主导航和完成任务的完成,精确映射和感知三维环境的能力至关重要,这是至关重要的,例如Maddern对自主系统中3D感知的分析[1]和O'Mahony对机器人中3D感知的探索[2]的研究强调了。水下机器人技术也不例外。只有初始条件显着差异,包括失真,可见性降低,声学干扰和与压力相关的挑战。这防止了重建的完美传递,并在完成水下环境中的完成方法进行了完美的转移。声纳图像是强度图,可根据对象的反向散射强度颜色图像[3]。在这里,斑点噪声是一种颗粒状干扰或干扰,通常会影响雷达和声纳系统获得的图像质量。因此,该域中的主要挑战之一是从2D成像来源生成准确的3D模型。这项工作着重于完善和完成不完整和嘈杂的点云,这些云是使用[4]的高程估计方法从2D声纳图像中重建的,该方法通过训练模型来估算高程角度,从而产生了2D声纳图像的3D点云。尽管如此,即使此方法非常有效,结果云仍然需要更准确,以提供自主系统环境的有用表示。为了实现有效的完善和完成点云,我们将PCTMA-NET用于致密点云,
当前的大多数动作识别算法都是基于堆叠多个卷积,汇总和完全连接层的深网。虽然在文献中广泛研究了卷积和完全连接的操作,但处理动作识别的合并操作的设计,在行动类别中具有不同的时间颗粒状来源,但受到相对较少的关注,并且主要依赖于最大值或平均操作的解决方案。后者显然无能为力,无法完全表现出动作类别的实际时间粒度,从而构成了分类的瓶颈。在本文中,我们引入了一种新型的分层池设计,该设计在动作识别中捕获了不同级别的时间粒度。我们的设计原理是粗到精细的,并使用树结构网络实现;当我们自上而下时,当我们穿越该网络时,汇总操作的不变性越来越少,但及时坚决且本地化。通过解决一个约束的最小化问题来获得该网络中最适合给定的基础真相的操作组合(最适合给定的地面真相),该问题的解决方案对应于捕获全球层次层次合并过程中每个级别(及其时间粒度)贡献的权重分布。除了有原则性和扎根,提出的分层池也是视频长度和分辨率不可知的。对UCF-101,HMDB-51和JHMDB-21数据库进行挑战的广泛实验证实了所有这些陈述。关键字。多重聚合设计2流网络行动cop-nition
摘要:背景:人口增长,车辆数量增加,计划外的城市化和城市迁移正在减少绿色空间,并加剧环境问题,例如空气,水和噪声污染。在这种情况下,大学校园是重要的小规模城市模型,在维持城市生态系统内的环境和社会福祉方面起着至关重要的作用。目标:评估Amasya UniversityHâkimiyet校园(AUHC)的树冠提供的调节生态系统服务,例如空气质量,能源节省和碳存储。方法:在这项研究中,使用I-Tree Canopy模型评估了AUHC的土地覆盖和生态系统服务。使用4000个随机点和生态系统服务(例如空间质量)评估了研究区域定义的研究区域(树/灌木,草/草植物,土壤/裸露的建筑,不透水的道路,不透水的道路,其他不透水的表面)。结果:覆盖AUHC的31.30%的树木和灌木冠层每年从空气中清除261.53千克的气体和颗粒状污染物,隔离36.57吨碳,并存储总计918.42吨的碳。这些生态系统服务的经济价值计算为758美元,用于清除空气污染,碳储存量为44420美元。校园的土地覆盖分配显示57.35%由不透水的表面(建筑物,道路)组成,而绿色空间为42.05%。结论:AUHC的树冠为生态系统服务做出了重大贡献,例如改善的空气质量,碳固存和储存,这些贡献和经济利益可以通过增加树木覆盖而进一步增强。
摘要 - 在2021年2月,一场空前的冬季风暴席卷了美国,严重影响了德克萨斯州的电网,导致超过450万客户的电力服务中断。本文评估了在实际电网中现实情况下客户经历的负载损失。它还对使用储能和负载配给来减轻旋转停电对网格的不利影响进行了初步研究。据估计,如果储能是唯一的技术选择,则需要总安装容量为920 GWH的公用事业规模的电池存储系统才能完全抵消德克萨斯州停电期间的负载脱落。我们的仿真结果表明,在系统上实施20%的负载配给可能会使估计的储能容量减少85%。此估计是使用2月15日至2021年2月18日的预测能力和需求文件获得的。认识到,实际部署这种尺寸的储能将是非常具有挑战性的,因此研究了减少颗粒状需求的方法,以作为利用储能来最大化消费者的生存能力的一种手段。初步案例研究表明,在这种极端天气条件下,将负载配给和适当的能量存储量相结合的潜力可能会为电网提供大大改善。索引术语 - 能源存储,负载配给,可再生能源,网格弹性
摘要本研究集成了零信任体系结构(ZTA)和区块链,以增强云计算安全性。在数字时代,云计算已成为全球存储和处理数据的主要技术。然而,事实证明,一种基于传统的外线安全模型在应对现代威胁方面无效,例如内部威胁,高达60%,勒索软件攻击2022年的大型计算云提供商,导致多达数十亿美元的美元,增强了现有安全模型的弱点。零信任体系结构(ZTA)提供具有颗粒状访问和身份验证控制方法的解决方案,但其应用仍然面临着效率和可伸缩性的挑战,区块链,通过分散技术和难忘的记录,提高透明度和数据完整性,但它们的使用通常受到能源消耗和高潜水的限制。本研究旨在探索ZTA和区块链之间,作为提高云安全性的创新解决方案。通过结合基于ZTA的访问控制和区块链透明度,本研究为内部和外部威胁开发了弹性的安全模型。仿真表明,ZTA和区块链的完整性可以将内部人员的威胁降低35%,并将数据审核效率提高20%。这种方法不仅提供了更强大的保护,而且还提供了一个迅速增长的云基础设施的自适应和透明系统。
图 8.1 显示了灵长类动物大脑中的味觉和相关嗅觉、体感和视觉通路的示意图,图 8.2 显示了它们在大脑中的位置。灵长类动物的神经生理学研究为理解人类的味觉、嗅觉和风味处理和神经成像提供了基础,因为对单个神经元的调节的研究提供了关于这些刺激如何在不同大脑区域中编码的基本信息,使用稀疏分布的表示,其中每个神经元的调节方式都不同于其他神经元(Kadohisa 等人,2005 年;Rolls,2008a、2015a、2016a、2021a;Rolls 等人,2010a;Rolls 和 Treves,2011 年)。对非人类灵长类动物的研究尤其相关( Rolls, 2014a , 2015b , 2016b , 2021a ),因为灵长类动物的味觉通路通过丘脑到达味觉皮层,而啮齿动物的脑桥味觉区与皮层下有直接连接( Small and Scott, 2009 ; Rolls, 2016b , 2021a );在啮齿动物中,饱腹感的影响位于孤束核的外周( Rolls and Scott, 2003 ; Scott and Small, 2009 ; Rolls, 2016b );啮齿类动物没有灵长类动物的主要部分,包括人类的眶额皮质,颗粒状部分(Wise,2008;Rolls,2014a、2019b、2021a)(见图 8.3)。这使得啮齿类动物无法成为人类和其他灵长类动物大脑中味觉、嗅觉和风味处理的糟糕模型(Rolls,2016c、2021a)。
印刷人体组织结构充满了仿生的血管网络,对组织和器官工程的兴趣越来越大。现在可以将灌注通道嵌入到细胞和密集的细胞矩阵中,但它们缺乏天然血管的分支或多层结构。在这里,我们报告了一种可推广的方法,用于在软矩阵中打印层次分支的血管网络。,我们通过同轴嵌入式印刷(Co-Emb3DP)将仿生血管通过同轴性牺牲写作(共旋转)(共旋转)将其嵌入颗粒状水凝胶基质中。每种方法都依赖于扩展的核心壳打印头,该打印头促进了印刷分支容器之间的便捷互连。尽管仔细优化了多个核壳墨水和矩阵,但我们表明可以同轴印刷嵌入的仿生血管,该容器具有围绕灌注液体的光滑肌肉细胞壳。在用汇合层的内皮细胞层播种时,它们表现出良好的屏障功能。作为最终的演示,我们构建了由人类诱导的多能干细胞衍生的心脏球体的密集细胞基质组成的仿生血管化心脏组织。重要的是,这些共旋转心脏组织在灌注下成熟,同步打击,并在体外表现出心脏有效的药物反应。这次进步开辟了新的途径,用于针对药物测试,疾病建模和治疗用途的器官特异性组织的可扩展生物制造。
在Oracle Cloud Infrastructure上运行SAP应用程序已获得裸机和虚拟机形状以及Exadata Cloud Service和Oracle Exadata Cloud@Customer的认证。Oracle Exadata云服务是在云中运行Oracle数据库的最强大平台。Oracle Exadata Cloud@Customer是Exadata的云版本,它位于客户数据中心的本地。这两种服务仅可从Oracle提供。SAP Application Server ABAP/JAVA以及SAP业务对象都可以在Oracle Cloud基础架构上部署。Oracle云基础架构将公共云的弹性和实用性与颗粒状控制,安全性和ON前提基础架构的可预测性相结合,以提供高性能,高可用性和具有成本效益的基础架构服务。Oracle Cloud Infrastructure提供一组核心基础架构功能,例如计算和弹性存储,以使客户能够在云中运行任何工作负载。它提供了一套全面的集成,基于订阅的基础架构服务,使企业能够在Oracle的企业等级管理,托管和支持的企业等级中运行任何工作负载。Oracle产品策略在IT基础架构上提供了灵活性和选择。有几种云数据库迁移技术:R3LOAD(SAP),BRSPACE(SAP),RMAN,O2O,TRIPLE O和DATA GOURD GUARD物理备用。有关云迁移技术的更多详细信息,请参阅第18页。