hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
纠错是构建量子计算机的关键步骤。量子系统会因退相干和噪声而产生误差。通过使用量子纠错,可以防止量子计算设备中的量子信息被破坏。人们为开发和研究量子纠错码做出了许多努力和改进。其中,拓扑码(如表面码 [1], [2])因其高阈值和局部性 [3] 而有望用于构建实用的量子计算机。色码 [4] 是另一种有前途的用于容错量子计算的拓扑量子纠错码。它们提供的阈值相对较好,略低于表面码 [5], [6], [7]。然而,与表面码不同,横向 Clifford 运算可以充当逻辑 Clifford 运算 [8]。量子擦除通道 [9], [10] 是简单的噪声模型,其中一些量子位被擦除,并且我们已知哪些量子位被擦除。当一个量子比特被擦除时,该量子比特被认为会受到随机选择的泡利误差的影响。了解哪些量子比特被擦除可能会使开发解码算法变得不那么复杂。最近,有人提出了在量子擦除信道上以线性时间对表面码进行最大似然 (ML) 解码 [11],它被用作表面码和色码的近线性时间解码算法的子程序 [6],通过将它们投影到表面码 [12]、[7] 上来纠正泡利误差和擦除。在本文中,我们证明了当一组被擦除的量子比特满足某个可修剪性条件时,在量子擦除信道上对色码进行线性时间 ML 解码是可能的,并提出了一种解码算法,我们称之为修剪解码。我们还提供了当不遵守可修剪性约束时如何使用修剪解码的方法。
摘要。识别人类操作员的电阻颜色代码是一项相对简单的任务,给定足够的经验,以便对颜色和位置进行记忆。都存在困难,更不用说当电阻器具有五个或六个频段时增加复杂性,在这种情况下,其中一些具有不同的含义和值。本文提出了一条计算机视觉图像处理管道,该管道试图预处理图像,检测,分割和旋转电阻器,检测和分割颜色带,并最终确定电阻器,耐受性和温度系数的名义值。结果表明,如果光条件适当,则检测准确。