近年来,光学遥感系统和方法已成为控制地球表面物体状态和事件的基本工具。为了监测自然现象后果和地球表面状态,需要使用高空间分辨率的卫星:Pleiades-1A、Pleiades-1B、TripleSat Constellation (DMC-3)、DubaiSat-2、Jilin-1、WorldView-1、2、3、RapidEye、Cartosat -3 等。这些卫星可以以数字方式获取目标局部区域的数百幅图像。这种多通道数据的分析是一项非常困难的任务,归结为强调特定物体、获取其特征和相对位置。安装在卫星上的遥感设备的典型数据集包括:多光谱(多通道)图像和全色图像(PAN)。全色图像的空间分辨率通常高于多光谱图像,这大大增加了物体识别的复杂性并对所使用的处理方法施加了限制。对于原始数据的信息内容改进,现有的图像处理方法存在一系列缺点,其中最主要的是颜色失真 [1-4]。这项工作的目的是提高原始多通道图像的空间分辨率,尽量减少颜色失真。从 WorldView-2 卫星拍摄的图像被用作输入数据。为了确定所提出的信息技术的有效性
摘要:水下图像遭受颜色失真和细节的损失,这严重影响了水下机器人的视觉感知能力。为了提高检测准确性,提出了一个多任务学习框架,以基于对比度学习的水下图像增强和对象检测提出了多任务学习框架,这不仅会产生视觉上友好的图像,还可以提高对象检测精度,从而实现对象检测任务的图像增强图像。为了解决不清楚目标纹理特征的问题,用于检测任务的区域生成模块用于构建用于对比性学习的正面和负面图像块,以确保目标区域更接近特征空间中的原始图像。此外,检测到的梯度信息用于指导图像增强方向,有益于目标检测。此外,提出了一种基于循环生成对抗网络的图像翻译方法来学习和保留图像增强的清晰图像特征,从而消除了对配对的水下图像的需求并减少了数据要求。最后,在EUVP,U45和UIEB数据集上对增强算法进行了验证,并且在RUOD,URPC2020和RUIE数据集上验证了检测算法。实验结果表明,所提出的算法可以在主观视觉中有效纠正颜色失真,同时保留原始图像和目标的结构纹理。就客观指标而言,峰值信噪比达到24.57 dB,结构相似性达到0.88。在更快的R-CNN(基于区域的卷积神经网络)和Yolov7(您只看一次,版本7)算法后,检测精度平均提高了2%。关键字:水下图像增强;对比学习;循环生成对抗网络;对象检测
水下环境的复杂性以及水中的轻衰减和散射通常会导致水下图像中的质量降解,包括颜色失真和细节模糊。为了消除水下成像中的障碍,我们提出了一种基于级联注意网络MSCA-NET的水下图像增强方法。特别是该方法设计了一个注意引导的模块,该模块以串行和并行方式连接通道和像素的注意,以同时实现通道特征的重新填充和特征表示增强。之后,我们提出了一个多尺度特征集成模块,以捕获图像中不同尺度的信息和详细信息。同时,引入了残留连接,以通过从浅水功能中获取更详细的信息来帮助深度功能学习。我们在各种水下数据集上进行了广泛的实验,结果表明,与最新的水下图像增强方法相比,我们的方法仍然具有优势。
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。