目录 摘要……………………………………………………………………………………………………..i 目录……………………………………………………………………………………...ii 简介……………………………………………………………………………………...1 饲养…………………………………………………………………………………………...2 常见问题………………………………………………………………………………...3 体温调节行为………………………………………………………………………………...5 颜色辨别…………………………………………………………………………...11 社会学习……………………………………………………………………………………18 对视错觉的感知…………………………………………………………………………...28 REM 睡眠…………………………………………………………………………...33 个人经历…………………………………………………………………………...37 结论……………………………………………………………………………………...39参考书目……………………………………………………………………………………43
摘要 大脑两侧的差异化专业化促进了信息的并行处理,这在很多动物中都有所体现。据报道,侧化程度更高的动物(表现为持续优先使用肢体)通常表现出优越的认知能力和其他行为优势。我们检测了 135 只幼年雉鸡 (Phasianus colchicus) 的侧化程度,通过它们在自发踏步任务中的足部特征来判断,并将这一指标与个体在 3 项视觉或空间学习和记忆检测中的表现联系起来。我们没有发现任何证据表明明显的足部特征会提高任何任务的认知能力。我们也没有发现任何证据表明中等的足部特征与更好的认知表现有关。这种缺乏关联令人惊讶,因为之前的研究表明,雉鸡在种群中略微偏向右足,而当被放归野外时,足部特征更高的个体更容易死亡。极端侧化受到限制的原因之一是,它会导致认知表现较差,或者最佳认知表现与某种中等程度的侧化有关。这种稳定的选择可以解释在大多数已研究的非人类物种中看到的中等侧化模式。然而,我们在这项研究中没有发现任何证据来支持这种解释。
如果图像足够小,仅落在中央凹的中心,则依赖于 S 视锥细胞的颜色辨别能力将受到损害。图 3.3 对此进行了说明。当观察距离很近时,每个圆圈的视角都对应几度,具有正常色觉的人很容易区分黄色和白色以及红色和绿色。但是,从几英尺远的地方观察,黄色和白色将无法区分。这被称为小视野三色盲,因为三色盲是完全缺乏 S 视锥细胞的人。无论图 3.3 中的黄色和白色有多大,三色盲都无法区分它们。在某些小视野下,即使是正常人也会表现得像三色盲。请注意,即使从远处看,红绿对仍然可以辨别,因为 S 锥体对于这种辨别不是必需的。因此,小视野效应仅限于依赖于 S 锥体 5 的辨别。(注意:由于再现颜色的技术困难,具有正常色觉的人可能仍然能够辨别远处的黄色和白色半圆。)
图 3 (a) 基于皱纹石墨烯-AuNPs 混合结构的光电探测器集成在隐形眼镜上及其光响应。[31] 经皇家化学学会许可转载。(b) 当激光点照射电极之间的 rGO 区域时,会发生光伏响应,并且与激光点的位置有关。[32] 经 Springer Nature Limited 许可转载。(c) 用半导体量子点光电探测器敏化的柔性石墨烯的摄影图像和示意图。(d) 基于光电探测器的反射模式和透射模式 PPG 的光电容积图 (PPG) 的示意图和 (e) 摄影图像。(f) 光电探测器透射和反射模式的归一化 PPG 结果。[36] 经美国科学促进会许可转载。 (g)由五苯有机半导体、金纳米粒子(AuNPs)构成的柔性石墨烯光电探测器的示意图和照片图像。(h)石墨烯光电探测器的存储性能。[33] 经美国化学学会许可转载,版权所有。(i)柔性石墨烯/钙钛矿光电探测器阵列(24×24像素)的示意图和照片图像。(j)用于颜色辨别的柔性石墨烯/钙钛矿光电探测器图像传感器的示意图和相应的输出图像。[34] 经中国科学出版社许可转载。