抑郁症与昼夜节律失调有关,但内在时钟在情绪控制大脑区域中的作用仍不太清楚。我们发现,在抑郁小鼠模型的内侧前额叶皮层 (mPFC) 中,昼夜节律负环路表达增加,正时钟调节器表达减少,随后快速抗抑郁药氯胺酮对时钟进行了反向调节。CaMK2a 兴奋性神经元中的选择性 Bmal1 KO 表明,功能性 mPFC 时钟是抑郁样表型和氯胺酮效应发展的重要因素。mPFC 中的 Per2 沉默产生了抗抑郁样效应,而 REV-ERB 激动增强了抑郁样表型并抑制了氯胺酮作用。时钟正调节剂 ROR 的药理增强引发了抗抑郁样效应,上调了可塑性蛋白 Homer1a、突触 AMPA 受体表达和可塑性相关的慢波活动,特别是在 mPFC 中。我们的数据表明 mPFC 分子钟在调节抑郁样行为方面发挥着关键作用,并且时钟药理学操作在影响谷氨酸依赖性可塑性方面具有治疗潜力。
要了解大脑如何产生行为,我们必须阐明神经元连接与功能之间的关系。内侧前额皮质 (mPFC) 对决策和情绪等复杂功能至关重要。mPFC 投射神经元广泛侧支,但 mPFC 神经元活动与全脑连接之间的关系尚不清楚。我们进行了全脑连接映射和光纤光度测定,以更好地了解控制雄性和雌性小鼠威胁回避的 mPFC 回路。使用组织透明化和光片荧光显微镜 (LSFM),我们绘制了投射到伏隔核 (NAc)、腹侧被盖区 (VTA) 或对侧 mPFC (cmPFC) 的 mPFC 神经元群的全脑轴突侧支。我们提出了 DeepTraCE(基于深度学习的追踪与综合增强)来量化透明组织图像中批量标记的轴突投射,以及 DeepCOUNT(基于深度学习的通过 3D U-net 像素标记进行物体计数)来量化细胞体。使用 DeepTraCE 生成的解剖图与已知的轴突投射模式对齐,并揭示了区域内类别特定的地形投射。使用 TRAP2 小鼠和 DeepCOUNT,我们分析了威胁回避背后的全脑功能连接。PL 是与 PL-cPL、PL-NAc 和 PL-VTA 目标位点子集具有功能连接的最高度连接的节点。使用光纤光度法,我们发现在威胁回避过程中,cmPFC 和 NAc 投射器编码条件刺激,但仅在需要采取行动避免威胁时才会编码。mPFC-VTA 神经元编码学习到的但不编码先天的回避行为。总之,我们的研究结果为定量全脑分析提供了新的和优化的方法,并表明解剖学定义的 mPFC 神经元类别在避免威胁方面具有特殊的作用。
长期以来,人们一直对意识的起源及神经关联存在争议。研究表明,前额叶和后顶叶皮质的感觉区整体工作空间与大脑的意识活动高度相关(Giacino et al.,2014)。后部皮质包含一个后部热区,用于产生视觉、听觉、触觉等多种意识体验(Boly et al.,2017;Koch,2018),这为后部脑区与人类意识相关提供了直接证据。前额叶严重损伤的患者仍然保留有唤醒和意识,这表明前额叶皮质应排除为意识依赖性皮质(Koch,2018)。但也有研究者认为,大多数与意识无关的额叶结构受损,并不会导致意识丧失;额叶中的关键结构主导着人类的意识(Koenigs 等人,2007 年;Koch 等人,2016 年)。意识障碍 (DOC) 是由于调节觉醒和意识的神经系统部分受损或功能障碍导致的意识状态改变(Schiffi 和 Plum,2000 年;Giacino 等人,2014 年)。DOC 患者通常因中风、缺氧等原因遭受严重的脑损伤(Gosseries 等人,2011b、2014 年)。此类患者可能处于植物人状态 (VS) 或微意识状态 (MCS)。这两种状态都具有较高的觉醒水平;MCS 涉及可重复的非反射性行为反应,而 VS [也称为无反应性觉醒综合征 (UWS)] 仅涉及对外部刺激的反射性行为反应。 VS/UWS 是一种临床综合征,描述患者在睁眼清醒状态下无法表现出自主运动反应(Laureys 等人,2010)。MCS 患者无法与周围环境交流;然而,他们表现出波动的意志行为残余(Laureys 等人,2004)。此外,根据他们对命令的响应能力、有意交流等,MCS 可分为 MCS + 和 MCS-(Chennu 等人,2017 年;Rizkallah 等人,2019 年)。此外,Thibaut 等人(2021 年)将大脑活动与 MCS 相似的 VS/UWS 患者定义为 MCS ∗。额叶是言语功能和运动行为的控制中心;它还被认为与更高级的认知有关,包括记忆和执行力(Chayer and Freedman,2001)。全局工作空间理论假设意识通过信息处理产生,信息处理通过以额叶和顶叶为中心的两个神经元网络将输入信息传播到整个大脑(Koch,2018)。神经影像学研究表明,意识水平的提高伴随着顶叶联想皮层代谢率的变化(Laureys et al.,1999 ) 以及与额叶相关的神经连接增加 ( Jang and Lee , 2015 )。脑电图 (EEG) 是一种非侵入性、高度兼容且便携的测量方法,可以测量
结果:我们已经证明,从少数前额叶位置进行的静息状态 fNIRS 记录为检测 AD 和监测其进展提供了一种有前途的方法。首先使用高密度连续波 fNIRS 系统来验证 AD 患者前额叶皮质区域相对较低的血流动力学活动。通过使用氧合血红蛋白浓度变化的发作平均标准差作为输入支持向量机的特征;我们随后表明,光学通道子集在预测 AD 的存在和严重程度方面的准确性明显高于偶然性。结果表明,AD 可以用 0.76 的敏感度得分和 0.68 的特异性得分来检测,而 AD 的严重程度可以用 0.75 的敏感度得分和 0.72 的特异性得分(≤ 5 个通道)来检测。
在日常行为中,我们会执行许多包含一系列动作的目标导向手动任务。然而,关于此类任务中预测控制机制的发展方面,尤其是支持儿童连续手动动作的大脑激活方面,我们了解的有限。我们在青春期早期(11-14 岁)正常发育儿童中调查了这些问题,并与之前收集的成人数据进行了比较。参与者躺在磁共振成像 (MRI) 扫描仪中,使用手持操纵器将计算机屏幕上的光标移向连续呈现的目标。下一个目标要么在完成当前目标后显示(单目标条件),在这种情况下无法提前计划即将到来的动作,要么提前显示(双目标条件),这允许使用预测控制策略。成年人在双目标条件下完成的目标比在单目标条件下完成的目标多,显示出有效的预测控制策略。相比之下,儿童在两个目标条件下完成的目标比在单个目标条件下完成的目标要少,而且由于抑制过早动作的能力有限,实施预测策略存在困难。与成人相比,儿童大脑中激活程度更高的区域包括前额叶和后顶叶区域,这表明由于抑制挑战,儿童对高级认知处理的需求增加。因此,对于连续手动任务中的预测机制,关键发展可能发生在青春期早期之后。这比之前报告的其他手动任务的年龄要晚,这表明预测阶段的转变很难掌握。
蓝斑 (LC) 是去甲肾上腺素能投射到前脑的主要来源,在前额叶皮层中,它与决策和执行功能有关。睡眠期间,LC 神经元与皮层慢波振荡相位锁定。尽管人们对这种慢节奏感兴趣,但由于它们与行为的时间尺度相对应,因此在清醒状态下很少报告这种慢节奏。因此,我们研究了在执行注意力转移任务的清醒大鼠中,LC 神经元与超慢节奏的同步性。前额叶皮层和海马中的局部场电位 (LFP) 振荡周期约为 0.4 Hz,与关键迷宫位置的任务事件相位锁定。事实上,超慢节奏的连续周期显示出不同的波长,因此这些不是周期性振荡。同时记录的前额叶皮层和海马中的超慢节奏也显示出不同的周期持续时间。这里记录的大多数 LC 神经元(包括光遗传学识别的去甲肾上腺素能神经元)都与这些超慢节律相位锁定,LFP 探针上记录的海马和前额叶单元也是如此。超慢振荡还对伽马振幅进行相位调制,将这些行为时间尺度上的节律与协调神经元同步的节律联系起来。LC 神经元与超慢节律协同释放的去甲肾上腺素将有助于同步或重置这些大脑网络,从而实现行为适应。
最近有越来越多的证据将脑组织网络中断与多种神经退行性疾病联系起来,包括一种罕见的绝症——肌萎缩侧索硬化症 (ALS)。然而,不同研究中脑网络特征的可比性仍然是传统图论方法面临的挑战。解决此问题的一种建议方法是最小生成树 (MST) 分析,它提供了偏差较小的比较。在这里,我们评估了 MST 网络分析对功能性近红外光谱 (fNIRS) 神经成像模式记录的血流动力学反应的新应用,在基于活动的范式中研究额叶功能性大脑网络拓扑中的假设中断作为执行功能障碍的标志,执行功能障碍是 ALS 研究报告的最常见的认知缺陷之一。我们分析了从九名 ALS 患者和十名年龄匹配的健康对照者记录的数据,首先使用锁相值 (PLV) 分析估计功能连接,然后构建相应的个体和组 MST。我们的结果表明,在多个 MST 拓扑特性方面,组间存在显著差异,包括叶分数、最大度、直径、偏心率和度发散。我们进一步观察到 ALS 组中的全局转向更集中的额叶网络组织,这被解释为该队列中的网络更加随机或失调。此外,相似性分析表明对照组中各个 MST 的重叠略有增加,这意味着健康队列中的参考网络拓扑变化较低。我们的节点分析表明,健康对照组的主要局部枢纽在额叶皮质上分布更均匀,左前额叶皮质 (PFC) 的发生率略高,而在 ALS 组中,最常见的枢纽是不对称的,主要在右前额叶皮质中观察到。此外,还证明了全局 PLV (gPLV) 同步指标与疾病进展有关,一些拓扑特性(包括叶分数和树层次结构)与疾病持续时间有关。这些结果表明,失调、集中化和
目的是最近,内窥镜上眼睑透性方法(SETA)已成为进入海绵窦(CS)的潜在替代方法。先前的几项研究试图定量地比较传统的开放前外侧颅底接近和透性暴露。但是,这些比较仅限于骨开口和轨迹提供的暴露区域,并且无法说明随后必要的手术操作提供的主要暴露途径。作者定量地比较了额颞骨(FTOZ)方法提供的手术通道和适用的Periclinoid手术操纵后的SETA,评估每个关键结构中关键结构的手术暴露,并讨论最佳方法选择。方法SETA和FTOZ方法是在8个Cadaveric头上进行的随后适用的手术操作。颅神经(CNS)II – VI和颈内动脉的暴露长度;跨层次,额叶和上颌骨(前)三角形的空间区域;曝光总面积;并比较了攻击的角度。结果在方法之间的结果是可比的,而FTOZ方法中的访问明显更大。在方法之间,CN III,V1,V2和V3的内部暴露的长度是可比的。FTOZ方法提供了CNS IV(20.9±2.36 mm vs 13.4±3.97 mm,p = 0.023)和VI(14.1±2.44 mm vs 9.22±3.45 mm,p = 0.066)的暴露略有增加。FTOZ还提供了明显更大的垂直(44.5°±6.15°VS 18.4°±1.65°,p = 0.002)和水平(41.5°±5.40°Vs 15.3°±5.06°,P <0.001)的范围更大,因此较大的攻击范围很大,并且是显着的自由度,并且是对攻击的范围。 = 0.021)和Infratrochlear(p = 0.007)三角形,以及海绵状内部颈动脉的暴露明显更大(17.2±1.70 mm vs 8.05±2.37 mm,p = 0.001)。在FTOZ中,总暴露面积也明显更大,该面积为CS的侧壁提供了广泛的访问以及内部通路的可能性。结论这是第一个定量确定在必要的手术手术后,目标区域中FTOZ和跨渗透方法的相对优势的研究。理解这些数据将有助于根据目标病变的大小和位置选择最佳方法和操作集。
怀孕期间感染病毒或细菌感染的女性患有神经发育或精神疾病的儿童的风险增加。母体免疫反应可能介导了母体感染的作用,因为临床前动物模型已经证实,母体免疫激活(MIA)会导致后代大脑和行为发展的持久变化。本研究试图确定头三个月期间的MIA暴露于背外侧前额叶皮层(DLPFC)(DLPFC)中的神经元形态和从MIA暴露和对照的男性rheSus Monkey(Macaca Mulatta)获得的脑组织中的脑组织。相对于对照组,在DLPFC上和上层中,Div> MIA暴露的后代显示了在DLPFC上和上层中锥体细胞中的神经元树突分支增加,在第一和第二学期暴露于孕产妇感染的后代之间没有显着差异。此外,与对照相对于对照的MIA阳离子后代,DLPFC额叶层中根尖树突的直径显着降低,而与三个月暴露不利。相比之下,暴露于MIA的后代的海马神经元形态的改变并不明显。这些发现表明母体免疫