摘要简介:额颞痴呆(FTD)包括一组神经退行性疾病,通过行为障碍和脑前颞前和额叶的神经变性在临床上进行了临床促进,导致萎缩。除了症状治疗外,目前尚无疾病修饰FTD的治疗方法。涵盖的区域:三个主要突变被称为家族性FTD的原因,大型联盟也研究了突变的载体,也是临床前阶段的。作为遗传病例是唯一可以预测生命中病理学的病例,到目前为止开发的化合物针对特定的蛋白质或突变。在此,将总结最近批准的临床试验,包括分子,ISMS机制和药理测试。专家意见:这些研究为未来铺平了道路。他们将澄清是否应解决单个突变,而不是沉积在大脑中的常见蛋白质从遗传转变为零星的FTD。
目的:本研究的目的是使用没有TMJ病理的患者中磁共振成像来评估颞下颌关节(TMJ)的形态参数。这项研究的发现预计将作为临床诊断和颞下颌疾病的科学研究的参考值。方法:检查了41名成年患者的磁共振成像图像。在矢状面上进行了con和关节叶状窝的测量。它们按年龄,性别和侧面分组,并使用在磁共振(MR)图像上测得的量化解剖值进行统计分析。结果:在所有参数方面,性别组之间未观察到统计差异。左侧的年龄和前对道角(ACOA)测量之间存在显着的,负,低水平的相关性。考虑到侧比较,测量左侧比右侧的高腺体窝宽度(GFW)值(p = .030)。观察到年龄和ACOA测量之间存在显着的,负,低水平的相关性。结论:年龄和ACOA测量值与TMJ不同边之间的GFW差异之间的相关性是他的研究的积极发现。针对这个解剖区域的形态分析仍然需要通过对较大人群进行的测量结果来确认,因为没有很多文章报告有关该主题的具体结果。关键字:颞下颌关节,解剖学,放射学,磁共振成像
ftld是引起痴呆症的主要原因,仅次于阿尔茨海默氏病和刘易体内痴呆症。VCP基因中的突变已知会导致遗传性ftld。 以前的合作研究,包括东京科学学院Hitoshi Okazawa教授的团队和Masaki Sone副教授Masaki Sone在Toho University的团队的研究,发现在使用老鼠模型的数十年后,胎儿阶段的DNA损害会影响FTLD的发作。VCP基因中的突变已知会导致遗传性ftld。以前的合作研究,包括东京科学学院Hitoshi Okazawa教授的团队和Masaki Sone副教授Masaki Sone在Toho University的团队的研究,发现在使用老鼠模型的数十年后,胎儿阶段的DNA损害会影响FTLD的发作。
*通讯作者Eliana Cristina de Brito Toscano博士(联邦联邦De Juiz de Fora的教授),Elianacbtoscano@gmail.com,完整的邮政地址:Faculdade de Medicina,Faculdade de Medicina,Federal De Juiz de Juiz de Fora -av。eugêniodo nascimento,s/n°-36038-330 -dom bosco,juiz de fora -mg。作者贡献Eliana Toscano和ÉricaVieira设计了这项研究,收集,分析和解释了临床数据。Eliana Toscano进行了组织学检查,免疫组织化学反应,形态学评估,统计分析和手稿起草。Lea Grinberg支持组织病理学评估和数据解释。Natalia Rocha和Regina Paradela支持统计分析和数据解释。Joseane Brant应用了神经心理学家测试。Alexandre Giannetti为收集硬化海马的收集做出了贡献。Claudia Suemoto,Renata Leite和Ricardo Nitrini提供了Hippocampi。Milene Rachid和AntônioTeixeira协调了这项研究并支持数据解释。所有作者均贡献并批准了最终手稿。
大多数灵长类动物的繁殖和生存都反映了竞争和合作关系的管理。在这里,我们研究了自由放养的恒河猴的神经解剖学和社会性之间的联系。在成年期,社会伙伴的数量可以预测颞上中沟和腹侧异质岛叶的体积,这分别与社会决策和同理心有关。我们发现大脑结构与其他关键社会变量(如成年人的社会地位或间接联系)之间没有联系,母亲的社会网络或地位与依赖婴儿的大脑结构之间也没有联系。我们的研究结果表明,特定大脑结构的大小随直接的亲和性社会联系的数量而变化,并表明这种关系可能在发育过程中出现。这些结果强化了社交网络规模、生物学成功和特定大脑回路扩展之间的假定联系。
为了了解听觉皮层处理过程,我们在 171 名人类连接组计划参与者中测量了 15 个听觉皮层区域和 360 个皮层区域之间的有效连接,并辅以功能连接和扩散纤维束成像。1. 确定了听觉皮层处理的层次结构,从核心区域(包括 A1)到带区 LBelt、MBelt 和 52;然后到 PBelt;然后到 HCP A4。2. A4 与前颞叶 TA2 和 HCP A5 相连,后者连接到背侧颞上沟 (STS) 区域 STGa、STSda 和 STSdp。这些 STS 区域还接收有关移动面部和物体的视觉输入,这些信息与听觉信息相结合,有助于实现多模态物体识别,例如谁在说话以及说了什么。与此“什么”腹侧听觉流一致,这些 STS 区域随后与 TPOJ1、STV、PSL、TGv、TGd 和 PGi 具有有效连接,这些区域是与布罗卡区(尤其是 BA45)连接的语言相关语义区域。3. A4 和 A5 还与 MT 和 MST 具有有效连接,后者连接到顶叶上部区域,形成与空间动作有关的背侧听觉“哪里”流。PBelt、A4 和 A5 与 BA44 的连接可能形成与语言相关的背侧流。
发展性计算障碍 (DD) 是一种学习障碍,会影响数字算术技能的习得。患者在数字处理方面表现出持续的缺陷,这与大脑激活和结构异常有关。据报道,发展性计算障碍患者的顶叶皮层(包括顶内沟 (IPS))以及额叶和枕颞皮层灰质减少。此外,计算障碍患者的白质存在差异,例如下纵束 (ILF) 和上纵束 (SLF)。然而,这些结构差异的纵向发展尚不清楚。因此,我们的目标是研究患有和不患有发展性计算障碍的儿童的灰质和白质的发展轨迹。在这项纵向研究中,我们以 4 年为间隔两次收集了 13 名患有发展性计算障碍的儿童(8.2-10.4 岁)和 10 名正常发育 (TD) 儿童(8.0-10.4 岁)的神经心理学测量值和 T1 加权结构图像。使用基于体素的形态测量法对纵向数据进行体素级灰质和白质体积估计。本研究首次揭示了 DD 儿童在发育过程中灰质和白质体积持续减少。双侧下顶叶包括 IPS、缘上回、左楔前叶、楔叶、右枕上回、双侧颞下回和颞中回以及岛叶均发现灰质减少。双侧 ILF 和 SLF、下额枕束 (IFOF)、皮质脊髓束和右丘脑前部放射 (ATR) 的白质体积减少。在行为上,DD 儿童在基线和随访中在各种数字任务中的表现明显较差,证实了数字处理方面的持续缺陷。本研究结果与文献一致,文献表明 DD 儿童在数字网络中的灰质和白质体积减少。我们的研究进一步阐明了大脑发育的轨迹,揭示了这些已知的颞叶和额顶叶长联系纤维和相邻区域的结构差异
音乐和语言能力密切相关。在感官层面,音乐和语言都涉及以结构上有意义的方式排列的声学刺激。例如,两者都涉及小单元(音符或单词),这些单元使用特定规则组合起来以创建更大的单元(旋律/歌曲和句子/故事)。从认知上讲,对音乐和语言的理解涉及对一系列声音中接下来的内容产生期望(Patel,2008),使用学习规则(例如语法)来解释输入(Jackendoff,2009;Jackendoff & Lerdahl,2006),并且需要使用记忆(Zatorre & Gandour,2008;Daneman & Merikle,1996)。尽管它们依赖于相似的过程,但有证据表明音乐和语言既涉及重叠的网络,也涉及不同的网络。感知音乐和语言会激活重叠的大脑网络。 EEG 数据显示,在认知处理的早期阶段(在感知声音后的最初 300 – 500 毫秒内;Gordon、Schön、Magne、Astésano 和 Besson,2010 年),fMRI 研究为解剖学上相似的网络提供了证据。例如,已知布罗卡区、颞上沟、颞上回、岛叶和额极参与了语言网络,这些区域在音乐处理中也很活跃(Hymers 等人,2015 年;Merrill 等人,2012 年;Schön
虽然额颞痴呆被认为是一种从中期或更高版本开始的神经退行性疾病,但现在清楚地发现,在症状发作前十多年观察到皮质和皮层下体积损失,并且随着衰老而发展。检验了引起额颞痴呆的遗传突变具有神经发育后果的假设,我们检查了19至30岁之间的症状前额颞叶痴呆突变携带者的Genfi队列中最年轻的成年人。相对于家族性非载波,发现MAPT和GRN突变载体的结构性大脑差异和提高的某些认知测试的性能,而在平均26岁的C9ORF72重复扩张载体中观察到较小的体积。这种早期差异的检测支持了某些额颞痴呆症的遗传突变的潜在有利的神经发育后果。这些结果对额颞痴呆的治疗干预措施的设计具有影响。需要在年轻年龄段的未来研究来鉴定神经发育期间发生的特定早期病理生理或补偿过程。
坦普尔综合征是一种罕见的印迹障碍,是由 14 号染色体的关键印迹区域 14q32 发生改变引起的。其特征是新生儿出生前和出生后生长迟缓、躯干肌张力减退和面部畸形。我们报告了一名 18 岁女孩,她被晚期诊断为坦普尔综合征,表现出所有典型的体征和症状,包括出生时小于胎龄、喂养困难、肌张力减退和发育里程碑延迟、中枢性性早熟、躯干肥胖和生长迟缓。该患者是文献中报告的第二例有临床和生化雄激素过多症迹象的患者,也是第一例使用脱氢可的松® 治疗且反应良好的患者。该患者的临床诊断是在一家罕见内分泌疾病中心进行长期随访后做出的,最近确定了 14q32 染色体印迹中心 (DLK/GTL2) 完全低甲基化的分子遗传学诊断。未进行生长激素治疗,尽管性早熟的治疗符合标准方案,但她的最终身高仍低于目标范围。提高对 Temple 综合征的认识和及时的分子诊断可以改善这些患者的临床护理,并预防固有的代谢后果。关键词:Temple 综合征,晚期诊断,长期随访
