为了去除和排出液体、气溶胶和雾气,未经处理的压缩空气流首先通过 0.01PPM 抛光预过滤器。然后将过滤后的压缩空气向上引导通过两个装有专门设计的净化滤芯的腔室之一。每个滤芯包含一个高性能干燥剂床和一个颗粒后过滤器。干燥剂材料吸附剩余的水蒸气,整体后过滤器通过收集任何剩余的颗粒物完成该过程。然后,压缩空气作为清洁、干燥的公用设施输送到分配系统或使用点。
尽管可再生能源迅速增长,但加利福尼亚州仍无法退休其大部分最肮脏的天然气发电厂。我们仍然需要它们在阳光不闪闪发光的情况下保持灯光,风不吹,电池是空的 - 夜晚和整个冬天的大部分时间。地热提供了支持太阳能,风能,水电和电池存储所需的全天可靠电源,并消除了我们对化石燃料源的依赖。
由于气候变化和间歇性可再生资源的增长,电网正在发生变化。很快,电力将按能源使用时间定价。当能源充足时,能源价格会很便宜,但当太阳不照耀或风不吹,或者出现热浪时,能源价格就会飙升!您的建筑能做出反应吗?储存能源对于克服峰值定价和间歇性至关重要。与公用事业公司合作将有助于电网使风能和太阳能更易于调度——能源更便宜,建筑和电网更灵活、更具弹性。
为了推进粉末床熔合 (PBF) 和吹粉沉积 (BPD) 等增材制造 (AM) 方法,有必要对这些部件进行特性分析,并了解它们与粉末冶金、铸造和锻造产品等其他工艺的不同之处。AM 进一步扩展到新市场将依赖于各种后处理方法的开发,例如表面处理。为了评估吹粉沉积 (BPD) 中沉积规模的下限,生产了公称 1 毫米薄壁 Inconel 625 样品。本研究评估了各种表面处理方法的效果,例如化学加速振动精加工 (CAVF) 和化学铣削 (CM)。通过对薄壁 Inconel 625 的机械性能和微观结构比较了不同的表面处理方法。本研究发现薄壁 BPD 工艺中的微观结构变化妨碍了对不同表面处理效果的评估。本研究强调需要将得到的微观结构与机械性能联系起来以理解结果。
为了尽量减少微生物活动的形成,应遵循几个程序。一些 PEDI 工厂每次进行再生时都会用稀氯溶液冲洗所有便携式罐体部件(罐体、头部、连接器等)。处理这些物品的所有人员还必须小心,不要用脏手或其他设备污染设备。每次进行再生时,离子交换树脂本身都会通过暴露于酸性或碱性 pH 极端值而经历有效的“生物杀灭”。当然,PEDI 工厂必须得到妥善维护并尽可能保持清洁。有些工厂会定期用稀氯溶液清洗再生罐和管道,以尽量减少微污染源。
我们在使用可再生能源(如太阳能和风能)方面一直处于领先地位,并且是全球前 20 名企业采购商之一。这是一个战略选择,对我们的脱碳努力将继续发挥重要作用。然而,可再生能源有局限性。我们的制造业务需要全天候的电力、热能和蒸汽供应。当太阳不照耀或风不吹时,我们不能断电。此外,虽然可再生能源产生的电力足以运行我们的一些工艺,但它们无法提供许多工艺所需的高温和高压热能和蒸汽。此外,我们的脱碳之路将使我们走向电气化更多的工艺,这将对已经紧张的电网增加更多需求。需要大幅增加稳定、可靠的发电量。
摘要。吹snow升华是极地区域的关键边界层过程,是南极冰盖表面质量平衡(SMB)中的主要消融项。这项研究更新了区域性气候气候模型(RACMO),版本2.3p3中的吹声模型,将爆炸的爆发升华为温度和水蒸气的预后方程。这些更新是通过更新以前的模型版本中的数字伪像,它可以替换均匀离散的冰颗粒半径差距,从而将最大冰粒半径限制在≤50µm上,而不均匀的分布覆盖半径为2至300 µm,而无需其他计算额外的计算盖帽。改进的模型对来自南极洲阿德利(Adélie)土地的地点D47的气象观察进行了验证。更新符合数值伪像,成功地预测了以风速的吹吹孔中的幂律变化,同时改善了其亮度的预测。此外,与Calipso(Cloud-aerosol Lidar和红外路径固定卫星观察者)进行了定性比较,卫星数据表明,Racmo准确地预言了每月吹吹频率的空间模式。该模型还产生了D47时的平均吹声层深度为230±116 m,与典型的卫星观测值相匹配。结果表明,在不吹雪的情况下,南极洲主要发生在夏季(10月至3月),冬季(4月至9月)的表面升华最少。引入吹声模型会产生一种主要在冬季造成的额外升华机制。从2000 - 2012年开始,模型集成的吹式升华平均为175±7 gt yr-1,比以前的版本增加了52%。总升华,总和吹雪和表面升华,达到234±10 gtyr-1,