摘要 - 高级风剪(LLWS)是影响安全性,守时性和环境的最突出的航空危害之一。为了减轻其效果,几个机场已经配备了专用系统,能够识别跑道附近LLW的存在。这些系统通常包含不同设备的集合,包括终端多普勒天气雷达,多普勒光检测和范围,以及沿机场地面扩散的动态计网络。LLWS识别技术基于垂直风轮廓的测量,当检测到风向或强度的快速变化时发出警告。由于此方法基于实时数据,因此在即将进行的LLWS事件的可能性上没有提供有用的预测。此外,就购买和维护而言,与LLWS检测系统相关的成本非常高,因此其安装非常高。在这项研究中,我们根据使用机器学习(ML)技术(用于从地面站观测值和压力水平的数值天气模型获得的风数据)的技术研究了一种用于预测LLWS事件的新方法。这项研究是在考虑了Palermo-Punta Raisi国际机场的地点进行的,因为这是意大利机场最受LLWS现象的约束。从2007年到2022年,从ERA-5重新分析和ENAV的气象和航空数据库中提取的历史数据系列被用来训练和测试不同的ML分类模型,通过对特定评估指标的分析来搜索最佳表现。我们获得的结果非常令人鼓舞,我们相信我们的工作对于开发新一代的低成本和高效率ML基于ML的LLWS预测工具非常有用。
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
1参见西班牙的公用事业量表:最终确定销售额低于公允价值,86 FR 33656(2021年6月25日)(最终确定),以及随附的问题和决策备忘录。2 ID。 3请参阅西班牙的公用规模风塔:反临时税务令,86 FR 45707(2021年8月16日)(订单)。 4参见Siemens Gamesa Reenwable Energy诉美国,621 F. Supp。 3d 1337,1348-49(CIT 2月16日,2023年)(Sgre I)。 5请参阅根据法院还押的重新确定结果,西门子游戏可再生能源诉美国,621 F. Supp。 3d 1337(CIT 2023),日期为2023年6月15日(第一次重新确定),第5-6页。 6 ID。 在6-8。 7 ID。 在8-9。2 ID。3请参阅西班牙的公用规模风塔:反临时税务令,86 FR 45707(2021年8月16日)(订单)。4参见Siemens Gamesa Reenwable Energy诉美国,621 F. Supp。3d 1337,1348-49(CIT 2月16日,2023年)(Sgre I)。5请参阅根据法院还押的重新确定结果,西门子游戏可再生能源诉美国,621 F. Supp。3d 1337(CIT 2023),日期为2023年6月15日(第一次重新确定),第5-6页。6 ID。 在6-8。 7 ID。 在8-9。6 ID。在6-8。7 ID。 在8-9。7 ID。在8-9。
Wind Data Sharing • Internal NREL Modelers/Analysts • United States Fish and Wildlife • Environmental Protection Agency • Energy Information Agency • Evolved Energy Collaboration, Proposal Development • American Wind and Wildlife Association • United States Geologic Survey • United States Department of Agriculture Technical Assistance and Report Writing • Duke Energy • Southern Company • Bureau of Land Management • US-AID (over a dozen countries supported) • State Department Knowledge Sharing • Wind Industry • The Nature Conservancy • International能源局•劳伦斯·伯克利国家实验室•全国风协调合作•美国地质调查
2024 年 4 月,波兰的太阳能装机容量达到 18.4 吉瓦。2016 年之前,光伏总容量不超过 100 兆瓦——过去八年的增长令人印象深刻。然而,这种成功是有代价的。在需求减少和可再生能源发电高峰期间,电力供应过剩的情况越来越严重。波兰风能和光伏的瞬时总发电量记录约为 16 吉瓦,而国家电力系统 (KSE) 的瞬时需求在周末可能会降至 13 吉瓦以下。波兰输电系统运营商 PSE SA 推出了非市场削减命令,规定了平衡电网所需的削减参数,特别关注发电来源、容量和削减期。PSE 表示,在削减光伏之前,它首先使用其他平衡选项,例如最小化发电数量和发电量
佛罗里达国际大学 (FIU) 的 NHERI 风墙 (WOW) 实验设施 (EF) 由 NSF 资助,是一个国家级设施,使研究人员能够更好地了解风对民用基础设施系统的影响,并防止风灾演变成社区灾难。NHERI WOW EF 由一个组合式 12 风扇系统提供动力,能够通过其流量管理系统在高达 157 英里/小时的风速下进行可重复测试。NHERI WOW EF 的独特优势是多尺度(全尺寸到 1:400)和高雷诺数模拟风和风雨的影响。这是通过使用十二个风扇和一个喷水系统实现的。此外,16,000 平方英尺的围栏安全区域使研究人员能够计划和执行高达 5 级飓风风速的破坏性测试。 NHERI WOW EF 使用各种设备、仪器和实验模拟协议,以及一批杰出的教师、员工和由技术和运营人员组成的训练有素的团队,以开展世界一流的研究。
激光雷达在例如场地评估中的应用近年来有所增加,这是准确性和可靠性提高的必然结果。激光雷达在主动涡轮机控制中的应用也显示出巨大的前景 1,2,3。激光雷达在风速测量中的一些优势在于它们可以进行远程测量,这意味着不需要高桅杆,并且可以轻松地从一个地点移动到另一个地点。然而,这不仅适用于大气测量,还可以用于例如风洞,在风洞中,人们可以从几乎任何空间点的空间局部测量中受益,而不会干扰流动。
Wind River 是物联网软件领域的全球领导者。其技术已应用于超过 20 亿台设备,并拥有世界一流的专业服务和客户支持。Wind River 正在加速关键基础设施系统的数字化转型,这些系统需要最高级别的安全性、性能和可靠性。
风振对双子座 8m 主镜的影响 Myung K. Cho 1,2 、Larry Stepp 1 和 Seongho Kim 3 (1)双子座 8m 望远镜项目;(2)亚利桑那大学光学科学中心;(3)亚利桑那大学航空航天和机械工程学院 摘要 大型望远镜的关键设计因素之一是控制由风压变化引起的主镜畸变。为了量化望远镜风荷载效应,双子座天文台在实际山顶条件下进行了一系列风试验。在南双子座望远镜的调试期间,同时测量了镜面多个点的压力,以及穹顶内外多个位置的风速和风向。在测试期间,我们改变了穹顶相对于风的位置、望远镜仰角、挡风玻璃在观测狭缝中的位置以及通风门的开口大小。针对 116 种不同的测试条件,以每秒十次的数据采样率记录了五分钟的数据。这些数据集经过处理,可提供每个时刻镜面上的压力图。根据这些压力图,使用有限元分析计算主镜的光学表面畸变。开发了数据缩减程序,以增强测试数据和镜面畸变的可视化。测试结果对
简介 风激光雷达在风力发电场场地评估等方面的应用近年来有所增加,这是准确性和可靠性提高的必然结果。激光雷达也正在成为主动涡轮机控制的工具 [1,2,3]。激光雷达在风速测量方面的一些优势在于它们可以进行远程测量,这意味着不需要高桅杆,并且可以轻松地从一个地点移动到另一个地点。这不仅适用于大气测量,还可用于风洞等,在风洞中,人们可以从几乎任何空间点的空间局部测量中受益,而不会干扰气流。然而,很少有研究报道将相干激光雷达技术应用于风洞环境。