迫切需要将可再生能源规划和生物多样性保护结合起来,以解决相互联系的气候变化和生物多样性损失危机并实现联合国的可持续发展目标7,13,而15。但是,在法国等许多国家中,限制可再生能源对生物多样性的负面影响的当前策略在计划过程中仍然存在主要局限性,可以通过建模方法克服。在这里,我们提出了一个新的基于建模的框架,旨在确定项目对生物多样性构成的Po Tential威胁。通过利用大规模标准化的公民科学生物多样性数据来创建生物多样性基准,该方法旨在更好地在不同阶段和项目前和项目后建设中更好地为生态影响评估(EIA)过程提供信息。我们证明了法国使用蝙蝠和陆上风能开发作为案例研究的实际应用。我们揭示法国可再生能源计划中的当前方法未能识别出具有生物多样性意义的地点,> 90%的风力涡轮机被批准用于构造的构造位置,以放置在蝙蝠具有很高意义的地点。未来风力涡轮机对蝙蝠造成的风险涉及所有分类单元(均受到欧盟的保护),包括具有较高碰撞风险的物种。我们强调了提出的基于建模的框架如何有助于对构建前和后结构后对生物多样性的影响进行更客观的评估,并成为EIA过程的普遍组成部分。它的实施可以促进一种更加生物多样性友好的方法来可再生能源计划,并与全球生物多样性框架到2030年停止生物多样性损失的目标保持一致。
尽管该州风能车队的最显着增长发生在2000年代末,但由于强制执行公用事业的要求,2020年代后期有望看到另一种增长,以减少能源产生的碳强度,这与《清洁能源转化法》一致,这是华盛顿州的地标工作,以使电力部门脱碳。此外,Puget Sound Energy和Avista等公用事业表明,无论是从用更大的单元重新销售退休的涡轮机构还是从开发新资源的发展中,它们都打算在未来几年内通过风。Avista正在惠特曼县开发新的资源,PSE正在扩大华盛顿中部的运营。,由于化石燃料目前发电的华盛顿超过23%,因此可以预期进一步部署,因为公用事业在CETA截止日期之前脱碳。
工业的快速发展需要更多的能源来支持其制造过程。不幸的是,传统能源主要被用作对自然不利且会破坏环境的主要能源。如今,从使用传统能源向使用可再生能源的转变在世界范围内日益普及。然而,可再生能源的存在给电力系统带来了新的挑战,其影响是降低传统能源(如热发电机)的惯性(无惯性)值。这种情况会导致频率振荡并导致电力系统停电。为了解决这个问题,本文提出了基于超导磁能存储(SMES)的先进虚拟惯性控制(VIC),用于适应可再生能源融入电力系统的影响。之所以选择 SMES,是因为它具有快速响应和高达 90% 的效率。利用双区域电力系统模型来检验基于 SMES 的 VIC 模型。从仿真结果来看,基于的VIC通过压缩系统超调量、减少稳定时间,成功减少了频率振荡。
4. 路边洼地应浅且坡度适中,以防止冲刷。在陡峭区域,应设置拦蓄坝以降低流速并提供源头控制淤泥遏制。必要时,拦蓄坝将与沉淀池和/或横向排水沟一起设置。
我们承认 Gaangalu 人民是这片土地的传统守护者,他们与土地、水域和社区始终保持着联系。我们向过去、现在和未来的长者致敬。
来源:已签约和承诺:ACP_FactSheet-Offshore_Final (cleanpower.org),2021 年。可能需要:Jurgen Weiss 和 Michael Hagerty 对东北地区进行的 Brattle 研究,“到 2050 年实现新英格兰温室气体减排 80%”,2019 年 9 月。Roger Lueken 等人对纽约独立系统运营商 (NYISO) 进行的 Brattle 研究,“纽约向零排放电力系统的演变:到 2040 年的运营和投资建模”。 2020 年 5 月 18 日。E3,“新英格兰深度脱碳下的电力可靠性”,2020 年 8 月 4 日。E3,“纽约州深度脱碳之路”,2020 年 6 月 24 日。https://www.nyserda.ny.gov/All- Programs/Programs/Offshore-Wind/Focus-Areas/NY-Offshore-Wind-Projects。纽约电网研究初步报告,2021 年 1 月 19 日。
风力涡轮机一直处于可再生能源技术的前沿。许多美国人从欧洲的照片中注意到了这一发展:高大的白色风力涡轮机散布在连绵起伏的绿色山丘上。许多人看到了德克萨斯州在绵延数英里的草原上开发大型风电场的新闻,以及罗德岛州布洛克岛最近安装了美国第一台海上风力涡轮机的新闻[1]。美国可再生能源的未来将继续扩展到居民后院。经过数十年的风力涡轮机研究和开发,许多欧洲国家(如比利时和丹麦)在私人或社区使用的小型风力涡轮机方面引领市场——尤其是自从丹麦从社区购买风力涡轮机开始取得了惊人的涡轮机发展以来[2、3]。风力涡轮机最近变得更便宜、更小、更高效,也更容易运输和组装[4-6]。这项新技术使家庭可以为自己的房子购买风力涡轮机并连接到电网,以便能够将多余的电力卖回给公用事业公司或与邻居共享。计算应用方案中的点对点 (P2P) 方法已可以应用于其他领域,例如可再生能源领域。Y 世代,也称为千禧一代,在互联网诞生之时长大。虽然这一代人的童年与他们的父母相似——在户外玩耍直到路灯亮起——但这一代人的成年期发生在互联网发展到人们手中运行的时候,不再是拨号上网,而是通过无线手机电脑。这是人类开始在聊天室进行社交、开始使用电子邮件进行工作以及你可以在互联网上搜索无穷无尽的知识的时代。互联网为普通人获取周围世界信息的方式带来了惊人的变化。这一代人最关心环境,因为他们在成长过程中吸收了大量全球信息 [ 7 ]。今天,
致谢 这项工作部分由瑞典国家空间委员会 (SNSB) 通过 NRFP-3 计划和吕勒奥理工大学 (LTU) 资助。我们感谢北方高性能计算中心 (HPC2N) 提供执行本海报中展示的数值模拟所需的计算机资源。我们还要感谢瑞典空间公司 (SSC) 的 Martin Bysell、Klas Nehrman、Mikael Viertotak 和 Per Baldemar 的协助和宝贵的讨论,这些有助于完成这项工作。
摘要 — 本文旨在定性和定量地回顾和阐述风力混合发电厂 (HPP) 与单个风能/光伏发电厂相比的优势。进行了一系列分析以评估 HPP 生产的年度能量生产/容量系数、功率波动和爬坡率,并确定不同的操作条件,以了解在 HPP 中结合风能、太阳能和储能的好处。分析基于时空相关的风能和太阳能时间序列以及历史市场价格时间序列。利用市场价格与风能-太阳能组合时间序列的相关性来评估通过将电力生产从市场价格低的时段转移到市场价格高的时段来拥有储能的灵活性。
电力电子技术的发展推动了风电融入电力系统。与传统的旋转同步发电机不同,风电与静态功率转换器相连。与转换器相连的风力发电机在未来电力系统中的作用值得重新思考,从被动跟随电力系统到主动参与电力系统的调节。在这里,我们首先回顾了过去几十年风能发展的成就。然后,我们重点介绍了电力电子技术在风电系统中的作用,包括其先进的控制以及从电力系统层面的角度相对于支持未来可持续电力系统的新兴要求的问题。然后,我们回顾了欧洲一些正在进行的试点项目和示范项目,以确定风电系统目前的研究重点。最后,讨论了未来的发展趋势,以实现更好的风电整合。
