请注意,本文档并非旨在阐明可量化ERW部署的NETCDR的可推广标准要求。是级联团队的评估,即ERW途径处于标准化阶段,在围绕固定的部署惯例固定要求之前,需要更多的实际部署。这项评估的关键基本原理是部署环境的异质性要求采用定量方法,这些方法是针对特定部署的特定地点环境而定制的,并且在途径的此阶段,透明地报告现场表征,测量方法和量化量可能会使围绕单个方法汇总的较高影响。在我们可以更可靠地表征不同部署设置中定量的最佳实现之前,需要从各个环境中部署和农艺设置进行其他数据。我们认为,提出标准可以在过度狭窄的一组测量方法上创建过早的锁定。在此阶段,我们认为,从业者最好在不同的农作物系统,土壤系统,地形和操作限制中保留多样性和灵活性,以最大程度地提高学习。
©2024作者。除非另有说明,此期刊上发表在《全球变化生物学》上发表的期刊文章的版本是通过谢菲尔德大学研究出版物和版权政策提供的,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该媒体允许在任何媒介中使用无限制的使用,分配和在任何媒介中使用,前提是原始工作适当地使用了原始工作。 要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/此期刊上发表在《全球变化生物学》上发表的期刊文章的版本是通过谢菲尔德大学研究出版物和版权政策提供的,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该媒体允许在任何媒介中使用无限制的使用,分配和在任何媒介中使用,前提是原始工作适当地使用了原始工作。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/
目前使用各种方法来量化与增强风化(EW)相关的二氧化碳去除(CDR),该方法涉及修改硅酸盐矿物质压碎的土壤。我们的目的是通过补充最近发表的土壤柱实验的结果来为CDR定量的标准化程序做出贡献,其中将压碎的橄榄石,氧化球和albite添加到土壤中,并在土壤中添加了总融合ICP-OES分析碱基阳离子浓度。CDR仅与基于渗滤液的总碱度测量值相当,校正了保留在土壤剖面中的风化产物后,我们将其定义为智障分数。智障分数占风化阳离子的92.7–98.3%,表明至少在我们的短期研究(64天)中,大多数风化产物保留在土壤中。进一步研究了智障风化产物的命运表明,以碳酸盐矿物质(最高34.0%)沉淀或吸附到反应性表面,例如土壤有机物和粘土矿物(最高32.5%)。因此,由于强烈的吸附和/或进一步的矿物降水反应(31.6–92.7%),可能会保留大部分风化产品,这可能对整个时间的CDR进行量化具有潜在的重要意义。我们得出的结论是,基于土壤的质量平衡方法可用于量化风化速率,并可以推断潜在的CDR。但是,仅在考虑到智障分数后才能限制在给定时间和深度间隔内实现的实际CDR。
甘蔗厂被认为是通过增强的风化(EW)具有很高的二氧化碳去除(CDR)的潜力,但尚未定量评估。这项研究的目的是1)通过EW评估各种甘蔗厂灰分的CDR电位,以及2)研究土壤条件和铣削灰分对CDR的影响。这是通过表征澳大利亚五台灰烬的物理和化学性质并使用一维反应性传输模型模拟风化的。该模型被列为模拟,以模拟100吨/公顷的湿灰(47 - 65%水)或压碎玄武岩的风化,在各种土壤pH和二氧化碳二氧化碳部分压力(PCO 2)的各种组合下(PCO 2)。在两级阶乘设计中进行了灵敏度分析,以测试pH,pH缓冲,材料表面积,浸润速率,植物摄入养分,有机物阳离子阳离子交换表面和PCO 2对建模CDR的影响。磨坊灰分的模拟CDR明显小于玄武岩(p <0.001),但在灰烬之间大多没有显着差异(p> 0.05)。铣削灰分的风化已累积地去除0.0 - 4.0 t CO 2 /ha(0.00 - 0.040 t CO 2 /t湿灰),类似于文献中建模的一些玄武岩和橄榄石。在大约5年内实现了磨坊灰分的理论最大CDR(基于适用的可风化材料)。CDR的估计值因条件而变化。至少当初始土壤溶液pH值最低(4.5,未封闭)时,pH为6.5或更少,持续缓冲且PCO 2较低(600 ppm)。cdr也显着降低。此处量化的pH和pH缓冲的效果可以解释酸性土壤现场试验中EW的低测量CDR,并突出了对pH缓冲能力进行更现实的建模的需求。总体而言,Mill Ash通过EW表现出很高的CDR潜力,尤其是在考虑生命周期益处的情况下,尽管必须在现场进行验证。
抽象的微量营养素营养不良是发展中国家人类疾病的主要原因之一。铁(Fe)是一种重要的微量营养素,因为它在人类代谢(例如免疫系统和能量生产)中使用。估计表明,全球人口占30%以上的人口不足,对婴儿和孕妇构成了特定威胁。植物已经适应了各种策略,用于吸收,运输,积累和储存组织和器官中的FE,后来可以被人类消费。生物强化是指植物可食代部分中的小质营浓度的增加,并了解植物中Fe积累的途径。常规的植物育种,转基因,农艺干预措施和微生物介导的生物体现都是解决FE缺乏的潜在方法。本评论文章对谷物作物中的Fe BioFortification的关键评估进行了严格评估。它涵盖了对FE的整体存在,在人类和植物环境中的重要性以及在FE吸收,运输,累积,积累和存储植物零件中使用的各种策略的深入分析。此外,本文探讨了FE的生物利用度,并研究了生物化的策略,并特别强调了传统方法和近期旨在增强粮食作物中FE含量的分类。鉴于FE对人类生命的重要性,适当的生物强化策略可以更好地消除隐藏的饥饿而不是人为的补充。
在扩散1k吨基线之前,进行了彻底的土壤测量和采样,以建立土壤化学和物理特性(例如,pH,土壤类型等)。通过采取额外的土壤样品来确定测量与土壤化学和物理特性相关,这导致生成的尺度图(例如,图2中所示的土壤pH值),这突出了该序列序列序列的高度差异。分析
在增强的透明度框架下,《巴黎协定当事方》必须每两年提交每两年一次的透明度报告。立陶宛的第1个双年期透明度报告(BTR)包括根据增强的透明度框架的方式,程序和指南(MPG)的所有必需要素的信息,以提高透明度框架(对第18/CMA的附件18/CMA.1):国家库存文档(NID)的信息(NID),朝着NDC的发展以及对NDC的发展以及调整级别的发展,风气变化,风气变化,风气变化,风气变化,风气变化,风气范围,风化和适应性,风化和调整范围,风格变化,风格变化,风化文档和调整范围,风化文档和调整范围,风化文档和范围的变化,并将其转移,风化文档的发展,风化文档(NID)和范围。能力建设支持和改进领域。根据决策5/CMA.3要求的常见表格格式(CTF)表,使用联合国报告工具提交,该表由立陶宛提交,应视为该BTR的整体组成部分。
未来几十年的净排放目标要求开发新的温室气体(GHGR)技术,并扩展到最高10 GTCO 2 E/YR。到2050年。由于GHGR技术的跨学科性和新颖性,GHGR研究面临着将技术学科调整到新领域的挑战,并通过确定和解决关键问题所需的知识来广泛地增强研究人员的能力。这种观点讨论了生物技术可以在多种GHGR技术以及限制进步的常见研究,社区和知识差距中扮演的重要但持续不断的角色。焦点的GHGR技术是(1)酶碳酸酐酶在直接空气捕获中催化CO 2交换的潜力; (2)微生物对加速土壤或基于反应堆的增强岩石风化的潜在效用; (3)通过增强的甲烷营养或生物反应器来氧化甲烷以氧化甲烷,从而氧化甲烷,以使甲烷氧化以氧化。对这些GHGR方法的研究进度受到缺乏跨学科研究社区发展以及知识差距的强烈限制。有必要清楚且可访问的可行问题,理想情况下,将其与容忍度的资金机会配对,作为招募和赋予相关研究人员的工具,以使这些不足的技术领域为这些领域。
正确答案的解释:正确答案是选择(b)学生的主张是正确的;图片中的证据表明,这两个山谷都是由风化和侵蚀的破坏力形成的,因为流动的水会破坏岩石并将小碎片携带在下游。选择(a)是不正确的,因为在河中沉积岩石的水没有形成山谷。选择(C)是不正确的,因为学生的主张是正确的,并且在两个山谷中都发现了风化和侵蚀的证据。选择(D)是不正确的,因为学生的主张是正确的,并且在两个山谷中都发现了风化和侵蚀的证据。
随着世界人口不断增长,农业对未来粮食供应的需求将成为农业界面临的最大挑战之一。换句话说,农业对于实现粮食安全至关重要。化肥和农药已成为植物生产的必需品,以满足人口的快速增长以及随之而来的营养需求的增加。然而,这些肥料/农药的滥用和滥用造成了许多问题,并对当今许多国家的农业生产产生了负面影响。此外,由于工业和农业的快速发展以及人口增长带来的人类压力破坏了自然生态系统,化肥、农药和重金属造成的土壤污染对环境和粮食安全构成了威胁。重金属污染也对生态系统和人类构成许多风险,影响食物链的安全、食品质量和利用土地进行农业生产的能力,进而影响粮食安全。为了应对这一挑战,需要投入大量精力关注土壤生物系统和整个农业生态系统,以便更好地了解控制农业用地可持续性的土壤、植物和微生物之间的复杂过程和相互作用。植物相关微生物在溶解矿物基质方面起着关键作用,有助于从主要矿物质中释放关键营养物质,并使土壤中提供必需的植物元素,从而提高作物生产力(Etesami 和 Adl,2020 年)。此外,这些有益微生物还参与生态系统中有机和无机化合物的降解和/或解毒(生物修复)(Etesami,2018 年)。因此,将这种植物微生物组引入农业是一种有效的方法,因为它具有长期和环境有利的机制,可以促进植物生长并保持植物健康和质量。近年来,低成本和环境友好的农业实践受到越来越多的关注。