月球种植挑战赛既是一项学生活动,也是一项竞赛。参与者将收到一个月球种植活动套件。团队将使用项目指南来定义自己的植物生长实验,定义参数,例如植物生长装置的结构、用水量以及添加到风化层模拟物中的营养物质,以帮助支持植物生长。
关键能力领域:重点领域的目的是利用社区的创造力、能量和资源,帮助 NASA 保持月球探索的前沿地位。ISRU 致力于推进收集、处理、储存和使用在月球上发现或制造的材料的技术。SP 重点领域涉及在严酷的月球表面环境中发电、分配和储存电力的技术。E&C 重点领域以通过场地准备、发射和着陆设施、增材制造、挖掘、风化层处理、装备、维护/维修等实现在月球表面进行经济、稳健、自主制造和建造的技术为中心。CC 是一个新的重点领域,源自我们之前的 LSIC 焦点小组,即极端环境、极端通道、尘埃缓解、月球模拟器和互操作性。他们专注于实现功能性月球基础设施以支持持续月球存在所需的技术和能力。这个多方面的小组与社区就互操作性、环境和测试、风化层和模拟物、机器人和自主性以及月球试验场 (LPG) 等主题进行讨论。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
极紫外光刻 (EUVL) 是一种集成电路 (IC) 制造技术 [1]。该技术使用波长为 13.5 nm 的 EUV 光将光掩模 (也称为掩膜版) 上的图案转移到晶圆上的感光光刻胶上 [2]。鉴于 IC 特征尺寸 < 20 nm,> 20 nm 掩膜版表面上的任何颗粒都会导致印刷图案缺陷 [3]。因此,控制这些纳米颗粒的释放和传输对于 EUVL 至关重要 [4]。EUVL 过程 [5] 在低压氢气环境中进行,以防止镜子氧化和碳生长。EUV 辐射的吸收会导致 EUV 诱导氢等离子体的形成。它由两部分组成:快光电子(E∼70eV)和体等离子体(ne∼108cm−3,Te∼0.5eV)。快电子和等离子体都会给它们能够到达的表面充电。有多项实验[6–8]报道,具有相似参数的等离子体和电子束可以从表面掀起灰尘颗粒。1992年,Sheridan等人[6]观察了介电灰尘从一个被氧化层覆盖的铝球上脱落,该铝球同时暴露在等离子体和电子束中。根据报道的假设(后来得到扩展[9]),粒子被等离子体带电,并被等离子体鞘层的电场掀起。2006年,Flanagan和Goree[7]对一个被风化层覆盖的玻璃球重复了Sheridan的实验,得到了同样的灰尘脱落现象。王等人 [8] 研究了在等离子体、电子束、它们的组合和紫外线辐射的影响下,风化层颗粒堆的浮起。根据已开发的“贴片电荷模型”,电子渗透到颗粒之间的空腔中,借助二次电子发射给隐藏的表面充电,然后
地区。缺乏准确信息会导致问题得不到妥善管理。因此,西澳大利亚州政府需要获取有关陆地、水域、大气和沿海条件趋势的全面信息,以履行其环境责任。在陆地上,有证据表明,人们越来越多地使用卫星遥感来提供这些信息。在广阔的海洋上,有证据表明,海洋科学家利用卫星遥感进行水深测量、海洋栖息地测绘、河口水质、海洋环流和热结构,渔业也将其用于渔业作业。为了继续在西澳大利亚州深度风化的风化层下发现新的世界级矿床,人们继续开发新的航空地球物理和卫星遥感勘探技术。
干气溶胶沉积 (DAD) 是一种新兴的增材制造喷涂工艺,可直接从干粉构建完全致密的纳米结构陶瓷涂层和低轮廓 3D 结构,而无需粘合剂或流体介质。由于 DAD 依靠冲击动能而不是热量进行致密化,因此功能陶瓷可以直接沉积在聚合物以及陶瓷和金属基材上。本演示将介绍我们在定制沉积系统中使用的两种截然不同的陶瓷原料粉末的一些结果:1.钛酸钡钕,一种用于 RF/微波通信的高 K 微波电介质,以及 2.模拟月球风化层,用于原位资源利用 (ISRU) 和太空制造。