潜在新兵 (PR) 说明:填写此表格前,请仔细阅读说明。潜在新兵 (PR) 必须用黑色墨水和大写字母填写此表格的 B 部分,并在抵达英国廓尔喀部队博卡拉 (BGP)、英国廓尔喀部队达兰 (BGD) 和 AWC BHERI (Surkhet) 时提交给招聘人员,以进行第一阶段 (注册)。申请人的 NPP、护照、演员表验证(如适用)、移民证书(如适用,例如,当申请区和 NPP 签发区的永久居留权不同时)、父母的 NPP、教育证书(SEE 考试成绩单、SEE 考试证书和品格证书)的复印件必须附在本表格上。有关更多信息,请访问我们的网站; http://www.army.mod.uk/bgn 注意:所有复印的文件必须使用 A4 大小的白纸,且 NPP 的两面必须清晰显示在纸张的一面。不遵守这些说明或提交包含不正确/不完整信息的表格将导致取消资格。
廓尔喀退伍军人咨询中心 (GVAC) 和大吉岭退伍军人咨询中心 (DVAC) 将于 2023 年 1 月 3 日开始运营,并从加德满都、博卡拉和达兰的营地以及大吉岭的大吉岭福利信托 (DWT) 提供退伍军人服务的所有三个要素(记录、养老金支付和结算)。
摘要 观测记录往往受到残余非气候因素的影响,必须在使用前检测并调整这些因素。在本研究中,我们提出了一种名为无线电探空协调 (RHARM) 的新方法,该方法提供了温度、湿度和风廓线的均质数据集以及对全球 697 个无线电探空站的测量不确定性的估计。从 1978 年至今,RHARM 方法已用于每天两次(0000 和 1200 UTC)调整 1,000-10 hPa 范围内 16 个气压水平的无线电探空仪数据,这些数据由综合全球无线电探空仪档案提供。相对湿度 (RH) 数据限制为 250 hPa。应用的调整被插值到所有报告的级别。RHARM 是第一个提供均质时间序列的数据集,该数据集估计了每个探空压力水平的观测不确定性。从构造上讲,RHARM 调整后的字段不受站点间偏差交叉污染的影响,并且完全独立于再分析数据。对温度、RH 和风的趋势分析突出了 1978-2000 年全球趋势的地理一致性增强,尤其是在北半球和南美洲。RHARM 显示北半球 300 hPa 的变暖趋势为 0.39 K/十年,热带地区的变暖趋势为 0.25 K/十年。RHARM 调整还减少了与欧洲中期天气预报中心 ERA5 再分析的差异,其中北半球的温度和相对湿度影响最大。对于风速,比较表明与对流层的 ERA5 高度一致。
图 2-1 哈祖斯飓风模型方法示意图..................................................................................................................... 2-3 图 2-2 哈祖斯飓风分析层次..................................................................................................................................... 2-6 图 4-1 平均风廓线......................................................................................................................................................... 4-4 图 4-2 所有 MBL 情况下 RMW 附近的水滴的平均和拟合对数廓线............................................................. 4-6 图 4-3 RMW 附近 10 米处海面阻力系数随平均风速的变化............................................................. 4-7 图 4-4 RMW 外情况的平均风廓线和拟合对数廓线............................................................................................. 4-8 图 4-5 RMW 外情况 10 米处海面阻力系数随平均风速的变化......................................................................... 4-9 图 4-6 10 – 30公里和 30 – 60 公里 RMW 情况..................................................................................................................................................... 4-10 图 4-7 回归模型、Kepert(2001)模型与观测到的边界层高度的比较......................................................................................................................... 4-13 图 4-8 10 至 30 公里和 30 至 60 公里 RMW 情况下 RMW 附近观测到的和建模的速度剖面......................................................................................................... 4-14 图 4-9 在 RMW 附近采集的投掷探空仪数据的建模风速与高度的平均误差......................................................................................... 4-14 图 4-10 RMW 附近 10 米处平均风速与边界层顶部平均风速的建模与观测比值比较......................................................................................................................... 4-16 图 4-11 投掷探空仪数据的建模风速与高度的平均误差在 RMW 区域外拍摄的照片 ............................................................................................................................................. 4-16 图 4-12 完全过渡的陆地平均风速(z 0 =0.03 米)与水面平均风速(z 0 =0.0013 米)与边界层高度的比值 ............................................................................. 4-18 图 4-13 ESDU 和修改后的 ESDU 风速过渡函数 ............................................................................................. 4-18 图 4-14 使用平板模型计算的朝向页面顶部移动的飓风的喷射强度 ............................................................................................................................................. 4-20 图 4-15 显示模拟和观测到的风速、表面气压和风向的示例图......................................................................................................................................... 4-22 图 4-16 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-23 图 4-17 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-24 图 4-18 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(结束)......................................................................................................................... 4-26 图 4-20 比较图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大地面峰值阵风风速示例比较 ............................................................................................................. 4-29 图 4-22 已消除的剖面示例 ......................................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例 ......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-37
摘要 观测记录往往受到残余非气候因素的影响,必须在使用前检测并调整这些因素。在本研究中,我们提出了一种名为无线电探空协调 (RHARM) 的新方法,该方法提供了温度、湿度和风廓线的均质数据集以及对全球 697 个无线电探空站的测量不确定性的估计。从 1978 年至今,RHARM 方法已用于每天两次(0000 和 1200 UTC)调整 1,000-10 hPa 范围内 16 个气压水平的无线电探空仪数据,这些数据由综合全球无线电探空仪档案提供。相对湿度 (RH) 数据限制为 250 hPa。应用的调整被插值到所有报告的级别。RHARM 是第一个提供均质时间序列的数据集,该数据集估计了每个探空压力水平的观测不确定性。从构造上讲,RHARM 调整后的字段不受站点间偏差交叉污染的影响,并且完全独立于再分析数据。对温度、RH 和风的趋势分析突出了 1978-2000 年全球趋势的地理一致性增强,尤其是在北半球和南美洲。RHARM 显示北半球 300 hPa 的变暖趋势为 0.39 K/十年,热带地区的变暖趋势为 0.25 K/十年。RHARM 调整还减少了与欧洲中期天气预报中心 ERA5 再分析的差异,其中北半球的温度和相对湿度影响最大。对于风速,比较表明与对流层的 ERA5 高度一致。
2023 年 3 月 28 日 廓尔喀养老金计划 - 2023 年奖励 1. 我谨通知您,廓尔喀退休金、廓尔喀服务养老金、廓尔喀残疾养老金和廓尔喀家庭养老金的现行费率已自 2023 年 4 月 1 日起进行修订。现行费率以印度陆军养老金为基础,并根据《廓尔喀养老金手册》发放,但包含与福利相关的现金提升,以考虑到向印度陆军退伍军人提供的实物福利,2023 年养老金增量为 7.38%,以考虑到尼泊尔生活成本的增长。根据现行政策,增幅基于尼泊尔中央银行的尼泊尔通货膨胀消费者价格指数。所有修订后的费率均取代 2022 年 4 月 1 日起的费率。 2. 廓尔喀退休金。附件 A. 3. 廓尔喀服务养老金 支付给廓尔喀委任军官的退休养老金的修订率列于以下表格中。 授予荣誉军衔的女王廓尔喀军官、女王廓尔喀军官和廓尔喀其他军衔的廓尔喀服务养老金的修订率如下:
提交申请表时,需附上申请人 NPP、护照、父母 NPP、移民证书和所有教育证书(SEE 考试成绩单、SEE 考试证书和品格证书)的复印件。复印件应为白色 A4 纸,NPP 的两面应清晰显示在纸张的一面。未遵循此申请表上的说明或输入虚假信息将导致申请人失去参加 Gurkha 招聘流程的资格。
辐射风险•为了安全地执行,您的程序需要在X射线指导下插入该行。X射线是一种电离辐射。研究表明,暴露于高剂量的电离辐射的人在暴露几年或几十年后会增加患癌症的机会。但是,尽管更复杂或更困难的病例可能需要更高的辐射剂量,但与此过程相关的辐射暴露量很小。•是对您的医生和放射医生的评估,将执行该程序的好处大于暴露于辐射的风险。专业的放射科医生和放射线照相师将确保在手术过程中保持辐射暴露尽可能低。•我对在此过程中接触辐射的风险有任何疑问,您可以在同意过程中与将执行您的程序执行的放射科医生进行进一步讨论。•如果您认为自己可能怀孕,请通知临床团队。
