所有 92FFD 系列集气室均采用机器人焊接,以确保设计一致、坚固、清洁且相对无泄漏,从而验证规定的效率和泄漏,以满足目前最严格的泄漏测试。每个单元都经过 IEST-RP-CC034.3 标准 PAO 扫描测试,以确保泄漏与未受损的过滤器一致。高级设计特点和高品质结构包括可拆卸表面,用于更换房间侧过滤器。这样可以保持洁净空间的完整性,因为无需穿透天花板。
– 材质:护栅:钢,磷化并涂有黑色塑料 壁环:钢板,预镀锌并涂有黑色塑料 叶片:压制圆形钢板,挤压涂有 PP 塑料 转子:黑色涂层 – 叶片数量:5 – 旋转方向:气流方向“V”逆时针,“A”顺时针,从转子上看 – 防护类型:IP 54(根据 EN 60529) – 绝缘等级:“F” – 安装位置:任意 – 冷凝水排放孔:位于转子和定子侧 – 运行模式:连续运行(S1) – 轴承:免维护滚珠轴承
转速和部分负载范围内。没有通常与叶轮中的电机堵塞有关的系统效率损失。PMblue 电机的尺寸与当今的 IEC 标准电机相同,因此可以直接互换。这些电机以其低噪音和无振动的运行脱颖而出,并且非常适合高达 5000 rpm 的极高转速。由于 PMblue 电机和 PMIcontrol 控制器来自同一来源,因此驱动组件彼此完美匹配。这有助于简单快速地调试,因为不需要特殊配置,产品符合开放的 ZAcode 理念。
右图显示了 AMETEK 的几种典型增值组件。这些包括风扇与线束的简单匹配,改装风扇组件以将硅橡胶挡板式止回阀整合到风扇中,直至由阳极氧化铝托盘、多个风扇和控制模块组成的装配组件。增值系统可以包括根据客户提供的图纸、规格和流程进行工作。我们将其作为我们自己的,并根据需要使用客户的供应来源。提供完整的组件使我们的客户可以编写单个采购订单,而不是为组件编写多个采购订单。客户的进货检验负荷以及车间劳动力和所需占地面积减少。设备完全组装并经过测试。
右图显示了 AMETEK 的几种典型增值组件。这些组件包括风扇与线束的简单匹配、改装风扇组件以将硅橡胶挡板式止回阀整合到风扇中,以及由阳极氧化铝托盘、多个风扇和控制模块组成的装配组件。增值系统可以包括根据客户提供的图纸、规格和流程进行工作。我们将这些作为我们自己的,并根据需要使用客户的供应来源。提供完整的组件使我们的客户可以编写单个采购订单,而不是为组件编写多个采购订单。客户的进货检验负荷以及车间劳动力和所需的占地面积都减少了。设备到货时已完全组装并经过测试。
在兰利 14 英尺乘 22 英尺亚音速风洞中测试了一个 1/8 比例的翼内风扇概念模型。这一概念是格鲁曼航空航天公司(现为诺斯罗普格鲁曼公司)考虑为美国陆军开发的设计(定为 755 型)。悬停测试在隧道附近的模型准备区进行。随着风扇推力的变化,距压力仪表地平面的高度、俯仰角和滚转角都会发生变化。在风洞中,随着风扇推力的变化,攻角和侧滑角、距风洞地板的高度和风速都会发生变化。在模型准备区和风洞中,针对几种配置测量了模型上的空气载荷和表面压力。主要的配置变化是改变安装在风扇出口以产生推进力的叶片角度。在悬停测试中,随着模型离地面高度的降低,推力消除法向力在风扇转速恒定的情况下发生了显著变化。最大的变化通常是高度与风扇出口直径之比小于 2.5。通过使用叶片将风扇出口气流偏向外侧,可以显著减少这种变化。在风洞中,对许多叶片角度配置进行了滚转、偏航和升力控制测试。还评估了襟翼偏转和尾翼入射角等其他配置特征。尽管 V 型尾翼增加了静态纵向 s
CWIC® 系统是一种多功能系统:单个过滤风扇单元(CWIC® 模块)可以连接起来形成不同尺寸的洁净室天花板,例如用于机器外壳、洁净工作台或洁净工作舱。模块化设计可以快速且低成本地构建洁净室,可以将其悬挂在天花板上或通过底座支撑在地板上。根据附加组件的负载,可以实现 4.800 毫米的范围,而无需支撑底座或悬挂装置。
并且必须用冷却空气消散高热负荷的场合。小型轴流风扇有各种电压和频率,并配有引线、接线端子和 MS 连接器。大多数设备都配有可选的内部风扇性能传感器 (FPS) 或外部低速警告装置 (LSWD)。Rotron AXIMAX ® 3 *可根据要求提供单独的性能曲线特性常规 • 物理尺寸:3.00” 直径 x 2.52”长 1 。• 重量:约 14 盎司。• 专为电子盒冷却而设计,例如飞机、地面和舰载应用中的航空电子设备、雷达、电子对抗、显示器和通信设备。• 提供定制安装配置,例如法兰或伺服环和同步夹 2 。
使用计算流体动力学优化航空推进系统的设计对于提高效率和减少污染物和噪音排放至关重要。如今,在这个优化和设计阶段,可以对燃气涡轮发动机的各个部件进行有意义的非稳态计算。然而,这些模拟通常彼此独立进行,并且只在接口处共享平均量,以最大限度地减少部件之间的影响和相互作用。与目前最先进的技术相比,这项工作展示了一个 360 度方位角大涡模拟,其中超过 21 亿个 DGEN-380 演示发动机的单元,在起飞条件下包围一个完全集成的风扇、压缩机和环形燃烧室,这是实现整台发动机高精度模拟的第一步。为了进行如此具有挑战性的模拟并降低计算成本,初始解决方案是从每个组件的独立扇区模拟中插值的。在方法方面,集成网格分几个步骤生成,以解决潜在的机器相关内存限制。然后观察到,与独立模拟相比,360 度计算收敛到一个工作点,零维值差异小于 0.5%,整体性能在设计的热力学循环的 1% 以内。使用所提出的方法,收敛