美国宇航局约翰逊航天中心声学办公室经理克里斯·艾伦表示:“这项工作将带来显著的益处,包括通过不再那么大或根本不需要的噪音控制来节省体积和质量,通过不再需要那么严格的消声器和消音器来减少系统压力损失,通过减少系统压力损失和高效风扇设计来降低功耗,并满足航天器的声学要求,为宇航员提供安全、适宜的声学环境。”
CaptiveAire 的工程服务团队训练机器学习模型来审查需求控制通风 (DCV) 传感器数据并确定预期的系统风扇运行时间。将此输出与实际系统风扇运行时间数据进行比较,以确定过度运行的位置 - 这是其他根本问题的迹象。确定这些系统的纠正措施,最终实现节能。本案例研究分析了初始审查的前 10 个位置:
摘要:数字孪生技术(DTT)是一个突破规则的应用框架。随着虚拟信息世界与物理空间的深度融合,它成为实现智能加工生产线的基础,对工业制造的智能加工具有重要意义。本综述通过对近5年相关文献的收集、分类和总结,从DTT和元宇宙的视角总结流体机械中泵和风机的应用现状,研究近5年来DTT和元宇宙在流体机械中的应用。研究发现,DTT和元宇宙技术除了在智能制造中有着相对成熟的应用外,在泵类产品和技术的开发中也发挥着重要作用,广泛应用于各类泵类等领域的流体机械数值模拟和故障检测。在风扇型流体机械中,双风扇可以综合运用感知、计算、建模、深度学习等技术,为风扇运行检测、发电可视化、生产监控、运行监控等提供高效的智能解决方案。尽管如此,也存在一些局限性。例如,在对精度要求较高的机械环境中,实时性和准确性不能完全满足要求。但也有一些解决方案取得了不错的效果。例如,通过改进风扇的锯齿参数、重新排列锯齿区域,可以实现轴流风扇的噪音明显降低和更好的气动性能。但元宇宙在流体机械中的应用案例较少。这些案例仅限于从虚拟环境操作真实设备,需要虚拟现实与DTT的结合。应用效果尚需进一步验证。
rosenbergcanada.com › 文件 › 上传 PDF 2019 年 6 月 15 日 — 2019 年 6 月 15 日 空调、空气处理装置、过滤系统和电子... 3 可靠性: • EC 风扇和数字风扇之间的高电气隔离。分区>
- První brnìnská strojírna Velká Bíteš, a.s., PBS, - Centre de Recherche en Aéronautique, ASBL, CENAERO, - Technische Universität München, Institute of Energy Systems, IES, - Swedish Defence Research Agency, FOI, - Université de Liège, ULg,
摘要。空气幕是一种有效的控制方法,用于分隔空气空间并减少不同区域之间空气、热量和污染物的交叉传输。研究表明,置换通风比混合通风更有利于室内空气质量。然而,置换通风可能容易受到一种称为锁定现象的影响,即污染物被保持在空间的较低分层部分并增加感染的可能性。本研究调查了室内空气幕和循环风扇是否可以减少置换通风空间的锁定现象,从而降低整个呼吸区的感染风险。具体来说,进行了数值测试以探索侧壁扩散器集成垂直槽空气幕是否足以降低感染风险。此外,在居住者上方使用循环风扇来探索它们是否会减少锁定现象。结论是,侧空气幕槽和循环风扇都不足以降低感染风险。事实上,所有测试的方法都会增加感染风险。感染风险的增加与之前的研究结果相反,这是由于整个空间的气流模式发生变化,破坏了热羽流,导致污染物从房间的一侧泄漏到另一侧。循环风扇提供了有希望的结果,但应在给定空间内风扇的理想数量、位置、流速、方向和尺寸方面进行进一步优化。
该套件包含两个叶片轴流风扇,可提供多种性能选择。这可用于为单个风扇操作提供冗余,从而轻松满足安全和任务保证要求,或用于双风扇配置以增加套件的性能范围和能力。每个风扇都在其自己的空气路径中运行,专门设计用于提高性能并最大限度地降低压降,并使用自动密封的独立止回阀允许单风扇或双风扇操作,而无需对套件进行物理修改。每个风扇都有传感器来监控风扇的健康状况和压差,而无需额外的硬件。声学将取决于外壳和管道,Sierra Space 也可以提供这两者。
如图 3 所示,PQ 特性表现出使用同等功率的电机时的特性趋势。风扇的风量较大,其静压为鼓风机的 1/2 至 1/5。鼓风机的静压较大,其风量为风扇的 1/2 至 1/5。在没有通风阻力(0 Pa)的情况下,在风扇周围没有物体的情况下(此自由空气条件为 x 轴),最大风量(QFmax)流动。但是,只要风扇安装在设备中,这种情况就不存在。通风阻力较大且风量不足的状态对应于图 3 中的 y 轴,由于空气不移动,因此风量为零。在这种情况下,风扇前后有障碍物阻碍气流或切断空气的循环路径。当风扇用于冷却或通风目的时,不能考虑这种操作条件。 (如果在此状态下继续运转,则风扇可能会受损。)实际的运转条件在上述两种极端情况之间变化。图3绘制了4种通风阻力(以二次曲线绘制)。包含风扇或鼓风机的设备单元具有不同的通风阻力,其中这4条曲线是典型的例子。流入设备的气流位于通风阻力曲线与风扇或鼓风机的PQ特性的交点处。倾斜度最小的通风阻力1曲线被认为是普通设备的通风阻力。在此通风阻力下,风扇的前后没有较大的障碍物,并且提供了足够的循环路径。风扇在此通风阻力1下可以最高效地运转,此时风扇最大风量的约80%是可能的。 (QF2带风扇时和QB2带鼓风机时风量) 4条曲线中,倾斜度最大的通风阻力曲线4,即使安装了高性能风扇或鼓风机,风量也只是最大风量的一小部分。此时,风量为QB1带鼓风机和QF1带风扇时,鼓风机的风量较大。中间的通风阻力曲线2和3的风量也是与各自的PQ特性相交的风量。 NIDEC SERVO提供专用于高静压区域的风扇,风扇电机针对中等通风阻力进行了优化设计。如图4所示,与普通轴流风扇相比,在高静压区域更易于实现更安静和节能的运行。(参见第G-36页)
5.2.5. 噪音测量。测量并记录紧急和非紧急模式下正向和反向运转的每台风扇组的声压级。测量路面上方 5 英尺处以及风扇两端 15 英尺和 30 英尺处的声压级。在风扇启动前和风扇关闭后至少 3 分钟测量环境声级。隧道中的风扇同时以合同图纸中所示的每种模式运行,测量工程师在测试时确定的路面上方 5 英尺处的声级。确保在紧急模式下建立气流后,所有风扇运行时,隧道内的喷射风扇噪音不超过路面上方 5 英尺处的 90 A 加权分贝 (dBA)。为了在正常运行时控制空气质量,确保在正常模式下建立气流后,隧道内喷射风扇的噪音在隧道任何位置的路面上方 5 英尺处不超过 85 dBA,一氧化碳水平低于 120 ppm。根据需要使用 VFD 调整正常运行模式下的风扇速度以满足噪音要求。