由于该系统仍处于开发阶段,因此从此次评估中我们几乎无法了解到 F-35 在作战行动中的操作和维护情况。 • 该项目完成了计划中的八个系统级弹道测试系列中的两个。 - 第一个系列证实了飞行关键系统的内置冗余和重新配置能力。第二个系列表明弹道损伤不会对 F-35B 推进系统性能造成可测量的下降,而且飞行员无法察觉到这种损伤。正在进行的分析将评估这些测试是否强调了 F-35 弹道损伤特有的脆弱性(例如,270 伏、28 伏和信号线之间的干扰或电弧和/或升力风扇叶片部分的损坏)。 - 第一个系列测试证实了聚α烯烃 (PAO) 冷却剂和燃油液压系统的火灾脆弱性。作为减轻重量的一部分,相关防护系统于 2008 年从飞机上拆除。脆弱区域计算工具分析显示,拆除这些系统会导致飞机脆弱性增加 25%。F-35 项目办公室可能会根据更详细的成本效益评估考虑重新安装 PAO 截止阀功能。F-35 设计不会重新考虑燃油液压系统保护。• 该项目的最新脆弱性评估显示,拆除燃油液压保险丝、PAO 截止阀
IPO 的一个重要目标是对当地产生影响。LLNL 授权的技术已促成众多新企业的成立,这些企业正在帮助推动经济增长,并支持三谷地区和大旧金山湾地区的高科技商业机会。例如,LLNL 的 Droplet Digital™ 聚合物链反应 (ddPCR) 已授权给位于加利福尼亚州普莱森顿的 QuantaLife, Inc. 这项技术可快速筛查生物样本中的病原体。它目前正用于检测感染患者中是否存在 COVID-19。LLNL 先进的激光喷丸系统已授权给位于加利福尼亚州利弗莫尔的 Metal Improvement Co. Inc. 这项技术可显著增强金属部件的强度,并已在商用飞机上喷丸了 40,000 多个喷气发动机风扇叶片。激光喷丸还用于波音 787-8 的机翼成型,使该飞机成为世界上每乘客英里燃油效率最高的飞机。 LLNL 开发的 DYNA3D 是第一个精确模拟金属结构弯曲、折叠和塌陷的计算机代码。DYNA3D 已授权给位于加州利弗莫尔的利弗莫尔软件技术公司,是汽车行业用于车辆碰撞测试的基础技术。
尺寸 3.0 T 3.5 T 4.0 T 5.0 T 1.5 T 2.0 T 2.5 T 3.0 T 3.5 T 4.0 T 5.0 T 容量 BTU/H 33,800 38,000 44,000 53,500 19,100 24,000 29,400 35,600 41,500 45,000 56,500 SEER 14.0 14.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0 14.5 参考。R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A 电压-频率-相位 208/230-60-1 208/230-60-1 208/230-60-1 208/230-60-1 208/230-60-1 208/230-60-1 208/230-60-1 208/230-60-1 208/230-60-1 压缩机 LRA (A) 72.2 109.0 123.9 152.5 56.3 62.9 67.8 72.2 109.0 123.9 152.5 压缩机 RLA (A) 14.1 16.7 17.0 23.7 9.0 10.9 12.8 14.1 16.7 17.0 23.7 风扇叶片直径/数量 叶片 24"/2 24"/2 24"/2 24"/2 24"/2 24"/2 24"/2 24"/2 24"/2 24"/2 冷凝器风扇 FLA/HP/RPM 0.8 / 1/6 / 850 0.8 / 1/6 / 850 0.8 / 1/6 / 850 1.1 / 1/5 / 850 0.65 / 1/8 / 850 0.65 / 1/8 / 850 0.8 / 1/6 / 850 0.8 / 1/6 / 850 0.8 / 1/6 / 850 1.1 / 1/5 / 850 1.1 / 1/5 / 850 MCA 18.4 21.7 22.1 30.7 11.9 14.3 16.8 18.4 21.7 22.4 30.7 最大保险丝/断路器 (A) 30 35 35 50 20 25 25 30 35 35 50 液体管路 (英寸) 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 吸入管线(英寸) 3/4 7/8 7/8 7/8 3/4 3/4 3/4 3/4 7/8 7/8 7/8
BUOYANCY AEROSPACE V1 LTD:一家“工程服务提供商”,从事硬金属和软金属的精密制造以及表面处理解决方案。他们说“我们对每一个组件负责”。总部位于 Jackdaw Road, Barnoldswick, Lancashire, BB18 6DX。BROOKHOUSE AEROSPACE LIMITED。复合材料、金属、装配和处理设施,为 Raytheon、BAE Systems、Leonardo、MBDA 等公司供货。总部位于 India Mill Business Centre, India Mill, Darwen, Lancs BB3 1AD。API DESIGN & BUILD LTD - 现称为 BCW Design & Manufacture,他们为 BAE Systems、GKN 和 Safran 提供端到端工程解决方案。总部位于 2 Innovation Drive, Burnley, England, BB10 2FT。RFD BEAUFORT LIMITED 生产工业橡胶制品、橡胶织物以及用于海洋和航空安全和救生设备的各种橡胶特种产品。公司在英国拥有两处基地,分别位于贝尔法斯特邓莫里金斯威 BT17 9AF 和飞行员工业园 Eric Fountain Road Ellesmere Port CH65 1AX EDM LIMITED,制造民用和国防航空教练机、客舱服务教练机、全尺寸模型、弹射座椅、全尺寸复制品。为 F-35 训练开发的平台以及负载训练器和 BAE 系统为欧洲战斗机台风和 Hawk 开发的全飞行模拟器。总部位于 Brunel House, 1 Thorp Road, Newton Heath, Manchester M40 5BJ TELEDYNE LIMITED(Teledyne Aerospace & Defence Electronics UK)是一家大型美国军用电子公司的英国分公司。他们的 Teledyne CML Composites 业务部门为 F-35 制造“飞机结构部件:复杂几何玻璃纤维填料”,提供“先进工程应用中的复合材料产品的综合制造服务,包括飞机结构和系统的部件和组件。”地址:Unit A Tebay Road, Bromborough, Wirral CH62 3PA.Teledyne 的国防和航天子公司也在约克郡的 Shipley 拥有一家制造工厂。RLC (UK) LIMITED - 也是 RLC 集团的一部分。(参见 Ronaldsway Aircraft Company)。三个英国站点:RLC Callender, Metcalf Drive, Altham Industrial Estate, Altham, Accrington, Lancashire, BB5 5AY;RLC Langford, 97 Largy Road, Crumlin, County Antrim, BT29 4RT;和 RLC Global Point, Global Point Business Park, Newtonabbey, County Antrim, BT36 5TB。根据他们最近向 Companies House 提交的报告,该公司“在军用飞机领域占有重要地位,主要供应 F-35 联合攻击战斗机钛机身部件和钛风扇叶片”。TECHNICAL FIBRE PRODUCTS LIMITED 为 F35 Lightning-II、欧洲战斗机台风、V-22 Osprey、B2 生产湿法无纺布。地址:Burneside Mills (Head Office), Kendal, Cumbria, LA9 6PZ BAE SYSTEMS (OPERATIONS) LIMITED - 总部位于 Warwick House, PO BOX 87, Farnborough Aerospace Centre, Farnborough, Hants,GU14 6YU。英国已知有 141 个地点 - 不清楚除了兰开夏郡的 Samlesbury Aerodrome 之外,哪些地点具体供应 F35,肯特郡罗切斯特和东约克郡的 BAE 结构测试设施。请参阅 CAAT 地图了解 BAE Systems 英国分公司的位置。
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。 GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而受到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍,重量仅为传统钛风扇叶片的三分之一 - 现已成为 GE 宽体发动机的标志 世界纪录推力发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材制造部件 发动机获得 FAA 批准,可使用增材制造压缩机传感器 GE 继续投资和改进发动机。GE 工程师改进了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发射规格相比,燃油消耗减少了 3.6% 在翼时间缩短了 60% 世界一流的 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其全球维护、维修和大修 (MRO) 提供商网络可随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机以满足具有目标工作范围的预期生命周期,从而优化硬件利用率并最大限度地降低拥有成本。额定推力为 94,000 磅GE90-94B 发动机以早期 GE90 发动机型号的成功经验为基础,为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后。GE 交付了 GE90-115B 发动机,该发动机目前为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证,起飞推力为 380 kN(85,000 磅)。,对于像 777 这样可搭载 375 名乘客(重量约 230 吨)的大型飞机,仅需两台发动机即可。作为 GE/NASA 节能发动机 (E3) 计划的衍生产品,它也是当今最省油、最安静、最环保的发动机。除了提供最大的推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率改进、更低的噪音污染和比当今高涵道比发动机低 33% 的氮氧化物排放量。本次研讨会试图通过简要介绍发动机的功能来突出介绍发动机的各个方面。2 对比高推力级涡扇发动机 (> 200 kN) (修改自 [2]) GE-90 CF6-50C2 CF6-80C2公司通用电气 (美国)通用电气 (美国)通用电气 (美国)自 1995 年 9 月 1978 年 10 月 1985 年 10 月开始使用在空客 A-340 和 B-777 KC-10 (军用) A-300/310, 747/767 上首次飞行描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 mm 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO时推力 388.8 kN 233.5 kN 276 kN巡航时推力 70 kN 50.3 kN 50.4 kNS.F.C.(SLS) 8.30 mg/N-s 10.51 mg/N-s 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/sFADEC的存在* 是 否 是其他信息 NOx排放量降低33%。噪音低于同级其他 TF(由于风扇叶尖速度低)LPT 的 TET 为 1144 K。燃油消耗(s.f.c.)低于其他发动机,寿命长,可靠性高。RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5 TO 推力 269.4 kN 366.1 kN 202.3 kN 巡航推力 52.1 kN 72.2 kN 176.3 kNS.F.C.15.95 mg/N-s(巡航) 15.66 mg/N-s(巡航) 10.06 mg/N-s 空气质量流量 728 kg/s 728+ kg/s 687 kg/s FADEC(Y/N) 否 是 否其他信息 合同中(截至 1995 年 9 月)世界上功率最强大的传统空调发动机(Trent 772) *FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作量。• 降低飞机运营成本。分析理论可参见 [3]。低推力级涡扇发动机 (< 200 kN)(根据 [2] 修改)3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底 1970 年 2 月 1988 年 7 月开始使用 首次飞行于空客 A-340 波音 727/737 和 DC-9 空客 A-320 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约)1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长度 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米压力比 37.4 17.3 29.4涵道比 6.6 1.00 5.42TO时推力 138.8 kN 72.9 kN 111.25 kN巡航时推力 30.78 kN 18.9 kN 21.6 kN S.F.C.16.06 mg/N-s 23.37 mg/N-s 16.29 mg/N-s空气质量流量 466 kg/s 148 kg/s 355 kg/sFADEC(Y/N) 是 否 是其他信息 4 GE-90涡扇发动机循环分析 以下是借助计算机程序进行的简单高涵道比涡扇发动机循环分析的结果。可以从[4]中获得更广泛和准确的分析。GE90 发动机的可用数据仅限于其起飞推力、涵道比 (BPR) 和总压比 (OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(如 CF6-80C2 和 CFM56)并考虑了适当的改进而假设的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(km)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300m f(千克/秒)1.079 2.968SFC(毫克/氮-秒)15.600 7.910Sp。推力 (N-s/kg) 120.100 278.100 计算得出的巡航推力值与配备两台 GE90 发动机的波音 777 飞机所需的推力非常接近,即每台发动机约 65-70 kN。GE 于 1990 年 1 月宣布开发 GE90。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上的 228 小时飞行时间。GE90 耐力发动机完成了超过 14,000 个循环,并表现出出色的分段耐久性。(489 kN) 的推力。93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 的关系 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 的关系 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0推力 SFC 推力和 SFC 与 TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 GE90 获得 FAA 认证,GE 航空发动机公司完成了有史以来由发动机制造商进行的最广泛的地面和飞行测试项目之一。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台完整的发动机问世。unisolve_pharmacy_software_manual.pdf 从那时起,GE 及其收益分享参与者共运行了 13 台开发发动机,这些发动机验证了发动机固有的设计优势。七台发动机的推力超过 100,000 磅。(444.5 kN),其中一台发动机的推力达到创纪录的 110,000 磅。事实上,GE90 开发发动机的推力水平已超过 100,000 磅。(444.5 kN),持续超过 65 小时。作为所需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅。(1.13 和 3.63 千克) 的发动机复合叶片鸟类吞食测试。1994 年 10 月,四只 2.5 磅的鸟被吸入,发动机以产生 85,000 磅(377.8 kN) 推力所需的速度运行,在炎热的天气下起飞。没有推力损失,发动机在吸入后所需的 20 分钟运行期间响应所有油门命令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运行。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片脱落测试。34042629589.pdf 为什么要使用全新发动机?释放叶片在风扇转速为 2,485 rpm 时引爆,比目标高出 10rpm,发动机产生超过 105,000 lb。(466.8kN) 的海平面静态 (SLS) 校正推力。发动机支架系统按设计运行,测试展示了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在整个测试的第一阶段,发动机在 45 次飞行中累计运行近 228 小时。发动机性能异常出色,性能水平超出规格,并在整个飞行包线内为飞行员提供不受限制的油门运动。市场需求 从历史上看,飞机的重量和推力要求一直在增长。低底盘汽车展评判评分表 如今,市场青睐重量更重、航程更长且内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于采用 GE90 动力的大型宽体飞机。为航空公司的未来做好准备 • 适用于整个新型大型飞机系列的通用发动机。• 新型宽体飞机所需的推力比当今的发动机高 20-30%。• 飞机历史上需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内置的总体性能优势 • 比当今的发动机高 10% 的 SFC。• 具有通用性的高推力增长。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计 GE90 的设计目的在于: • 推力增长。• 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9 • 低排放。• 低噪音。• 降低运营成本。选择循环以节省大量燃料。其余的乘法和除法依次为 • 优化了旁通比。• 优化了总压比。• 为最低 SFC 和燃油消耗而设计。10.sinıfya coru bankası pdf 选择的设计可最大限度地提高航空公司的利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商开发的维护程序。• 低噪音和低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证为 84,700 磅。(533.4 kN)。复合材料风扇 2。(376.5 kN) 推力 - 1995 年 2 月• 首次增长认证为 92,000 磅。(408.9 kN) 推力 - 1996 年 5 月。• 可能增长到 120,000 磅。高推力和测试经验总结• > 422.3 kN 下运行超过 145 小时• > 435.6 kN 下运行超过 95 小时• > 440.0 kN 下运行超过 75 小时• > 444.5 kN 下运行超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时 注:海平面静态 (SLS) 校正推力水平 八台 GE90 发动机已在 445 kN 或以上的 SLS 推力下运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证 (490.3 kN)。• 三重红线块测试的“彩排”。• 1.13 kg 伯德认证/叶片脱落认证。10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1.低压压缩机 (LPC)/助推器3.高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5.高压涡轮机 (HPT)6.低压涡轮 (LPT) 11 复合材料风扇 GE90 风扇设计 风扇图 • 22 复合材料宽弦叶片和平台。• 大风扇直径,可实现更高的空气流量。• 风扇齿轮传动 - 降低风扇叶尖速度,从而产生更少的噪音。• 低叶尖速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查,重量更轻。• 混合(锥形/椭圆形)旋转器,减少核心碎片的摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。GE90 风扇叶片 风扇叶片 • 宽弦复合材料风扇 - 高性能、低重量。• 环境阻力 - GE90 风扇材料系统表现出与当前飞机复合材料相同的环境阻力。12 • GE90 风扇复合材料系统与目前在用的风扇复合材料系统类似。• 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。• 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。燃烧室 • 成功的先进军用项目的双圆顶环形燃烧室。• 降低 NOX 排放水平(低至 10 ppm。)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 圆顶气动热调节功率设置。• 高度重新点火能力 30,000 英尺(9.144 公里),有裕度。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为第 1 级和第 2 级。los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的放大在测试单元和飞行测试中展示了性能和可操作性。• 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 刚性、简单支撑的转子系统(如 CFM56)可实现动态稳定性。• 仿照成功的 CF6-80 设计而构建的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统功能。• 具有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 具有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。15 其他特点 ([2]) GE90 与环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体降低任务总燃料消耗 = 降低任务总污染物。• 推力与核心流量比更高。GE90 燃烧室提供更好的可操作性,同时降低排放水平 • 双环形燃烧室。• 飞行员圆顶针对可操作性进行了优化 - 主圆顶针对高功率进行了优化。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 已验证排放水平。可运输性• 专为标准发动机运输方法而设计。GE90推进器• 比当今的高涵道比涡扇发动机更小 GE90模块化设计• 仅允许更换推进器• 将推进器/喷嘴与风扇定子模块分开• 风扇定子模块保留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,110,000磅。通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。• 422.3 - 435.6 kN 风扇改进的涡轮机械。18 参考文献 1.• 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。• 466.8 kN 风扇带有分离式核心的更高 P/P 风扇。• 511.2 + kN TF带有分离式核心的更高速度和 P/P 风扇。17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然无法获得有关该发动机的确切技术信息,例如其重量、压力比、TIT、巡航推力、sf.c 等。导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,在推力和燃油效率方面,该发动机是独一无二的。
这是CEN-Tech 63423自动电池充电器的安全手册。警告符号表示潜在的人身伤害危害,因此请遵守所有安全信息以避免受伤或死亡。有四种类型的危险情况:一种可能导致死亡或严重伤害,另一种可能导致轻微伤害或中度受伤,以及有关眼部受伤和火灾风险的两个警告。为了最大程度地降低风险,使用前阅读手册,佩戴ANSI批准的防溅镜,然后遵循连接程序。手册还警告不要使用制造商不建议的附件,这可能会对人造成火灾,电击或伤害的风险。此外,它建议不要使用不正确的延伸线,因为它们可能会导致火灾和电击。如果必须使用延长线,请确保其处于良好的电气状态,并具有与充电器插头相同的数字,大小和形状引脚。该手册还提供了基于充电器的AC Ampere额定值来确定扩展线的最小AWG尺寸的准则。它强调了不使用损坏的绳索或插头操作充电器的重要性,而不是拆卸它,因为这可能会导致电击或火灾的风险。此外,它警告说,由于在正常电池运行过程中产生的爆炸性气体,在铅酸电池附近工作是危险的。要降低这种风险,请遵循电池附近使用的设备手册和制造商提供的说明。如果与皮肤或衣服上的酸接触,请立即用肥皂和水洗涤。满:收费。要安全使用铅酸电池,必须采取个人预防措施,例如在紧急情况下附近有某人,佩戴防护装备,例如完整的眼睛和衣服,并避免在电池附近触摸眼睛或火花。如果酸进入眼睛,请至少淹没冷水至少10分钟,并寻求医疗护理。切勿在电池或发动机附近吸烟或在电池附近散发火花,因为这可能会导致爆炸或短路。在电池附近处理金属工具时要谨慎,以避免产生可能导致爆炸的其他电动零件。使用铅酸电池时,请删除诸如环和手表之类的个人金属物品。仅使用专门为铅酸电池充电的充电器,因为它们不适用于启动运动应用以外的低压系统。切勿给冷冻电池充电,因为它会造成伤害或损坏。充电前,请确保该区域通风良好,并从车辆中卸下任何附件以防止弧线。充电时,请始终遵循制造商的说明并采取必要的预防措施,例如在每个细胞中添加蒸馏水,直到酸水平达到指定的量为止。不要过度填充,并仔细遵守制造商的指南,以进行收费和建议的程序。在车辆电池上使用电池充电器时,首先检查其具有负面或阳性的地面类型。如果是否定的,请将红色夹子连接到电池上的正(未接地)柱,避免化油器,燃油管线和金属身体部位。如果是正面的,则将黑色夹子连接到电池上的负(未接地)柱。始终关闭开关,拔下AC线,并在断开连接时从端子上卸下充电器夹。如果电池在车辆外面并采取预防措施以避免可能引起爆炸的火花,请执行以下步骤。对于海洋电池,请使用合适的设备在岸上充电;在船上充电需要专门的设备。使用电池时戴防护装备,例如安全护目镜和手套,因为酸会导致永久失明。不要将起始设置用于为电池充电,而仅用于启动。在检查或清洁电池之前,请先将充电器伸出儿童的触手可及,并拔下插头。仅在铅酸电池上使用此充电器;对于无维护的,请使用充电仪监视其充电进度,以避免过度充电。不要试图给电池充电或有缺陷的电池充电,也不要尝试一次充电一次。让您的充电器由合格的专业人员提供服务,以确保其安全性保持完整。在疲倦或在可能损害您注意力的物质的影响下切勿使用充电器,因为这可能会导致严重的人身伤害。移动充电器之前,断开电源和电池连接,然后冷却。患有起搏器的人由于潜在的电磁干扰风险而在使用充电器之前应咨询其医生,并遵循诸如避免独奏操作之类的其他预防措施。数字显示:xx.xx V:电压。1。必须采取重要的安全预防措施,以避免电击。这包括正确地接地电源线并使用接地故障电路关键器(GFCI)。也必须了解常识和谨慎是必不可少的,即使它们不能内置在该产品中。接地和交流电源线连接指令强调将充电器安全连接到插座的重要性。不应以任何方式更改或篡改充电器,因为这可能导致电击风险。电池充电器的关键规格包括电气等级(120 V AC / 60 Hz / 10 A)和电荷设置(2 A 40 A Boost)。此外,在设置或使用产品之前,必须阅读重要的安全信息。组装说明需要仔细的步骤,例如在组装或进行任何调整之前完全冷却充电器。必须根据提供的图表正确连接幻灯轮轴承,车轴和轮毂板等重要组件。操作说明强调使用之前需要阅读整个安全信息部分。这包括防止严重伤害的预防措施,确保正确组装了充电器,直到指示这样做之前才插入。密钥控件功能功能功能包括选择不同的充电模式(6V/12V 2A-慢电荷,12V 10A-快速充电)和发动机启动功能,带有用于重新调节的LED指示器,电缆反向,维护,电压显示,安培显示屏和状态显示。显示选择:循环浏览电压,当前和状态显示。处理-1 2。铅酸电池充电器/起动器指令在电池充电时会显示。xx.xx a:安培。牧师:电缆相反。Charg:充电。XX S:冷却倒数。desul:否定。侦察:修复。坏:电池不良。仅在洪水酸酸电池上使用此充电器/起动器。其他电池可能会损坏,也可能过热,泄漏或着火。在指示这样做之前,请勿插入充电器/起动器。防止严重伤害:每当连接,断开连接或在电池附近连接时,穿ANSI批准的防溅镜和重型橡胶工作手套。电池酸会导致永久失明。,如果需要,将电池从车辆充电中卸下,请始终先从电池上卸下接地端子。确保车辆中的所有配件都关闭,以免引起弧线。在电池充电时,请确保电池周围的区域通风良好。干净的电池端子。请小心以防止腐蚀与眼睛接触。在每个电池中添加蒸馏水,直到电池酸达到电池制造商指定的水平。不要过度填充。对于没有可移动的电池盖的电池,例如阀门调节的铅酸电池,请仔细遵循制造商的充电说明。在充电和建议的充电速度时研究所有电池制造商的具体预防措施。通过参考车主手册来确定电池电压,并确保与电池充电器/启动器的输出额定值匹配。如果充电器/启动器的充电率可调节,则最初以最低速率充电电池。必须拆除海军陆战队(船)电池并在岸上充电。要在船上充电,需要专门设计用于海洋的设备。带有比重计的电池:不要依赖于比重计的眼睛来确定电池电量水平。充电器/入门位置:在DC电缆允许的情况下,将充电器/起动器定位到远离电池。切勿将充电器/起动器直接放在电池上方。电池中的气体会腐蚀和损坏充电器/起动器。在阅读电解质特异性重力或充满电池时,切勿让电池酸滴在充电器/起动器上。请勿在封闭区域内操作充电器/起动器,也不要以任何方式限制通风。不要在充电器/入门器的顶部设置电池。表B:充电率/时间电池尺寸/等级12V充电率充电时间(基于电池以50%充电)小电池(摩托车,花园拖拉机等)6-12 AH 3-6小时不要将这些费率用于小电池。Cars / Trucks 200-315 CCA 40-60 RC 13 - 20 hr 2-1/2 - 4 hr 1/2 - 3/4 hr 315-550 CCA 60-85 RC 20 - 35 hr 4 - 7 hr 3/4 - 2 hr 550-875 CCA 85-125 RC 35 - 55 hr 7 - 11 hr 2 - 3 hr Use to jump start only.充电应以最低的速度进行冷电池,并在达到正常温度时增加。不要为冷冻电池充电。拔下充电器/启动器和位置AC和DC电缆,以减少引擎盖或活动部件的损坏。远离风扇叶片和其他可能造成伤害的部位。确定哪个职位接地到底盘。风扇-1 14。检查电池柱的极性:正(POS)的直径通常大于负(NEG)。对于大多数车辆,将正(红色)夹连接到未接地的正柱,将负(黑色)夹连接到车辆的底盘或发动机块,远离电池。请勿连接到化油器,燃油管线或钣金身体部位。将充电器/入门插入接地的120V容器中,然后打开电源开关,直到所需的功能亮起。请参阅表B。尝试启动车辆发动机时,请始终按相反顺序遵循该过程,并断开第一个连接,同时使其远离电池。使用后,将充电器/起动器清洁并存放在儿童范围内的室内。至关重要的是避免在电池附近发生火花,因为这可能会导致电池爆炸。为了最大程度地降低风险,在连接或断开电池连接时戴上ANSI批准的安全护目镜和重型橡胶手套。一些带有机载计算机的车辆可能会因高电流启动输出而损坏。在继续之前,请仔细阅读车辆服务手册。此外,切勿使用启动设置为电池充电;相反,仅用于跳跃目的。如有必要,在极度寒冷的天气或电池严重用尽时,在10A时为电池充电约五分钟。确保发动机启动充电率与车辆的电池规格相匹配。应急启动器功能理想情况下应至少提供所需的电池CCA额定值的50%。对于正面的车辆,请相反。以降低移动发动机零件,风扇叶片,皮带,皮带轮或其他组件损坏的风险的方式将AC和DC电缆定位。确定哪个电池柱接地到底盘。如果是负数,请继续进行负面的车辆;否则,请遵循正面的车辆的程序。将充电器/入门夹连接到电池上相应的未接地柱,并将其牢固地连接到框架的重型金属部分或远离电池的发动机块。用于负地面车辆:将正(红色)夹连接到正柱,将负(黑色)夹连接到车辆的底盘或发动机块。将充电器/启动器插入接地的120V插座,打开电源开关,选择12V 200A启动功能,然后按开始/停止按钮启动该过程。如果发动机未能启动,请在尝试重新开始之前,在10A中为电池充电五分钟。成功的发动机启动后,停止功能,关闭电源开关,拔下电源线,从车辆的底盘和电池端子上卸下夹子,然后清洁充电器/启动设备。使用充电器/起动器之前,请检查其状况并检查可能影响其安全操作的任何损坏或缺陷。每次使用后,用干净的布擦拭外表面。如果供应线损坏,则必须仅由合格的技术人员代替。不要自行开放房屋。所有维修和更换应仅由认证的技术人员进行。手柄封面-1 3。请仔细阅读以下内容:制造商不建议您维修或更换本产品的任何部分。您对自己的维修或零件更换期间造成的任何损害承担所有风险和责任。变压器-1 4。螺母-7 5。电缆存储钉-2 6。主要住房-1 7。电源电缆-1 8。内部控制面板-1 9。敲击螺钉-6 10。固定板-4 11。外部控制面板-1 12。螺母-9 13。右外壳-1 15。支架-2 16。黑色负电缆-1 17。红色正线-1 18。电源开关-1 19。HEX Bolt,Spring Washer&Washer Set -4 Harbor Freight Tools Co.保证此产品从购买之日起90天,以抵抗材料和工艺缺陷。 此保修不适用于滥用,滥用,疏忽或事故造成的损害。 请注意,某些州可能不允许排除或限制偶然或结果损失。 适销性和健身。 要利用此保修,请以预付的运输费用返回产品或部分,并提供购买日期和问题的描述。 如果我们的检查确认了缺陷,请酌情修复或更换它,或退还购买价格,如果我们不能快速提供更换。 我们将支付返回维修产品的成本。 此保修授予您特定的合法权利,并且可能因州而异。 有关技术问题,请致电1-888-866-5797。HEX Bolt,Spring Washer&Washer Set -4 Harbor Freight Tools Co.保证此产品从购买之日起90天,以抵抗材料和工艺缺陷。此保修不适用于滥用,滥用,疏忽或事故造成的损害。请注意,某些州可能不允许排除或限制偶然或结果损失。适销性和健身。要利用此保修,请以预付的运输费用返回产品或部分,并提供购买日期和问题的描述。如果我们的检查确认了缺陷,请酌情修复或更换它,或退还购买价格,如果我们不能快速提供更换。我们将支付返回维修产品的成本。此保修授予您特定的合法权利,并且可能因州而异。有关技术问题,请致电1-888-866-5797。本综合指南提供了有关如何通过适当的充电和维护来最大程度地发挥电池潜力的知识。可靠的CEN Tech模型是为了安全的电源恢复而设计的。理解基本功能,例如选择电压选择和自动关闭功能可以有效充电。实施常规维护实践可以使您的电池保持最佳状态。我们将涵盖充电器的目的,安全操作,组装,连接和监视充电过程。有价值的建议有助于养成良好的习惯,并防止昂贵的早期电池更换。我们将讨论常见的查询,包括产品注册和对小问题进行故障排除。通过使用此简单的工具,您的车辆和钱包都将受益于延长的电池寿命。遵循以下快速提示,以充分利用您的启动电源:依靠安全自动充电周期在放电事件后完全振动电池。正确的电压选择可防止过载。每次使用充电器时检查电池连接。每月检查流体水平,仅使用蒸馏水来延长电荷之间的使用寿命。在使用CEN Tech电池充电器之前,请阅读所有者手册。确保使用充电器,尤其是安全说明和故障排除提示,以彻底查看手册。序列号是无限制的信息,如果您需要TU与CEN Tech有关支持或保修问题,则需要。通常是充电器或底部后面的locatet。将其写下来并将其保存在安全的位置。CEN Tech电池充电器设计的TU充电“> 6V和12V铅酸电池。它具有一些很酷的功能,例如充电率选择器开关,电池类型选择器开关以及显示电池充电状态的LED显示屏。tu使用它,只需按照以下步骤进行操作:在电池和负夹子tu负端子上进行正夹tu阳性端子即可。充电率选择器开关可让您在快速充电和trick滴充电之间进行选择。电池类型选择器开关可让您在标准的铅酸电池和深循环电池之间进行选择。LED显示屏将向您展示收到的电池充电量。充满电后,充电器将自动开关TU维护模式TU保持电池电量。使用CEN Tech电池充电器是安全而简单的过程,但是您必须遵循安全说明,请避免严重伤害或火灾。这里有一些重要的安全警告:使用充电器始终阅读并遵循所有者的手册和安全说明。不要用损坏的绳索或插头操作充电器 - 立即将其更换,以避免发生火灾或电击的风险。不要暴露雨或雪的充电器,也不要在潮湿或潮湿的条件下使用它。仅使用用于特定电池的充电率和时间 - 充电或收费不足会损坏电池并产生火灾或爆炸的风险。连接到充电器的TU电源时,切勿触摸夹具 - 这可能会引起火花并产生火灾或电击的风险。如果被删除或损坏,请勿使用充电器 - 是否会再次使用合格的技术人员对其进行检查。仅在室温下给电池充电。将充电器远离儿童和宠物,并将其与清洁或维修的电源断开连接。不要在极高或寒冷的温度下为电池充电 - 极端温度会损坏电池。将红色夹具连接到电池的正(+)端子,并确保其牢固地连接。接下来,将黑色夹具连接到负( - )端子,再次确保安全连接。您的CEN技术电池充电器现在可以使用!有关组装指导,如果您有任何疑问,请参阅用户手册或联系Harbor Freight工具。现在组装了充电器,请按照下一部分的说明进行有关电池充电的说明。使用电池充电器涉及一个直接的过程,可以延长电池的寿命。这是一个分步指南:使用充电器之前,请阅读所有者的手册和安全说明。您将找到有关安全有效操作的基本信息。要快速访问,请在线检查有用的链接或YouTube视频,提供逐步说明。要为电池充电,请将充电器连接到电池,以确保预先插入电池。将正(红色)夹连接到正末端,而负(黑色)夹子将其连接到负末端。固定后,插入充电器,然后自动为电池充电,直到充满电。用充电器的LED显示器监视进度。电池装满时,充电器将关闭以防止过度充电。使用小刷子或压缩空气从通风口清除碎屑。通过将充电器从电源出口拔下电源,然后从端子上删除夹子。要保持充电器状况,请根据以下步骤定期清洁它:拔下插头,并用柔软的布擦拭外部。在重复使用之前彻底干燥。立即更换任何损坏的绳索或插头,以确保安全并防止损坏。CEN技术电池充电器可能会遇到一些问题,尽管效率可靠和高效。故障排除大多数问题涉及检查充电器是否正确插入电源,确保电池端子干净,验证电池电缆是否正确连接,并检查物理损坏或燃烧零件。如果这些步骤无法解决问题,则可能需要使用真正的CEN技术更换零件来替换某些零件。关键产品规格包括使用6伏和12伏电池,在充电前选择适当的电压设置,使用基于电池的大小和状况的不同安培设置,并能够自动或手动充电。充电器具有安全功能,例如充电保护,短路保护和反极性保护。注册您的CEN技术电池充电器对于保修福利和接收产品更新和安全信息是必需的。这涉及准备收据和产品信息,访问Harbor Freight Tools网站,输入个人和产品详细信息,上传收据的副本并提交注册表。完成后,您将收到一封带有注册信息的确认电子邮件。您可以在货运工具网站上访问产品注册历史记录。注册CEN Tech电池充电器是一个简单的过程,从长远来看可以节省您的时间和金钱。汽车电池的充电时间取决于其容量和充电器的速度,通常需要使用CEN技术充电器4-8小时。但是,建议检查电池的电压并按照制造商的说明进行充电时间。充电器旨在为电池充电和维护电池,而跳跃起动器跳跃 - 启动死电池。它不能重新恢复完全死亡的电池;相反,它保持状态良好的电池。如果电池完全死亡,则可能需要更换。将电池连接过夜是安全的,因为充电器一旦充满电就可以自动切换到维护模式。Devul功能有助于清除电池板的硫酸化,从而可以延长其寿命。此功能适用于AGM电池,但请确保根据制造商的说明选择正确的充电模式。如果连接充电器时会发生火花,则可能表明极性逆转。通过翻转夹具并重新连接充电器来立即对此进行更正。请记住,在使用任何电池充电器之前,请始终阅读所有者的手册和安全说明。如果您需要在与电池相关的问题方面提供更多帮助,请确保查看我们的其他有用的文章:“断开汽车电池会影响计算机吗?”以及“为什么我的汽车说完全充满电?”总结:阅读所有者手动中的所有安全说明和警告,请选择电池类型的适当电压和充电模式连接正(红色)夹至正终端,负(黑色)夹至负极末端插件中,请充分充电,让电池充电,然后在极端的限制和可见级别的情况下端接降低,并端接端部的限制端子,并端接端部的限制性限制,并置于可见级别的情况下,并置于可见级别的范围,并保持末端的限制,并终止端部的限制级别。 Cen-Tech替换额定使用和维护,您的Cen-Tech电池充电器可以长期提供一致的性能。和“块加热器可以帮助电池死电池吗?”此外,我们还有有关如何使用Schumacher电池维护器以及如何固定高电池电压的分步指南。