本专著总结了一项为期一年的研究(从 2002 年 6 月到 2003 年 7 月),研究内容涉及国家风洞和推进测试需求,以及美国国家航空航天局 (NASA) 的主要风洞 (WT) 和推进测试 (PT) 设施 1 持续满足这些需求的能力;该研究还确定了 NASA 内部所需的任何新投资和过剩产能。该研究重点关注对更大(因此建造和运营成本更高)测试设施的需求,并确定了 NASA WT/PT 设施面临的管理问题。本专著应引起 NASA、国防部、航空航天工业、管理和预算办公室、科学和技术政策办公室以及国会决策者的兴趣。本专著的详细支持信息包含在一份较长的配套技术报告中:
本技术报告提供了为期一年的研究(从 2002 年 6 月到 2003 年 7 月)的详细数据、观察结果和结论,该研究考察了国家风洞和推进测试需求以及美国国家航空航天局 (NASA) 主要风洞 (WT) 和推进测试 (PT) 设施 1 在满足这些需求方面的持续能力,确定了所需的新投资和 NASA 内部的任何过剩产能。本报告应引起 NASA、国防部和航空航天业研究开发测试和评估社区的人们的兴趣,他们希望详细了解 WT/PT 设施测试的国家需求、NASA 的设施以及对国家需求很重要的选定非 NASA 设施的技术考虑。本报告作为配套报告并支持以下专著:
本技术报告提供了为期一年的研究(从 2002 年 6 月到 2003 年 7 月)的详细数据、观察结果和结论,该研究考察了国家风洞和推进测试需求以及美国国家航空航天局 (NASA) 主要风洞 (WT) 和推进测试 (PT) 设施 1 满足这些需求的持续能力,确定了所需的新投资和 NASA 内部的任何过剩产能。本报告应该引起 NASA、国防部和航空航天业研究开发测试和评估社区的人士的兴趣,他们希望详细了解国家对 WT/PT 设施测试的需求、NASA 的设施以及对国家需求很重要的选定非 NASA 设施的技术考虑。本报告作为以下专著的配套报告并为其提供支持:
术语“数值风洞”,也称为“数字风洞”。在互联网上搜索这些术语通常会找到超级计算机系统,例如日本国家航空实验室 (NAL) 部署的“数值风洞系统”。这是前科学技术厅下属的一个实验室,后来并入日本宇宙航空研究开发机构 (JAXA)。第一个基于超级计算机的数值风洞于 1993 年推出。作为第一代并行矢量超级计算机,它成为世界上最优秀的计算系统,跻身 TOP500 榜单 (http://www.top500.org) 之列,并获得了戈登贝尔奖。尽管数值风洞与超级计算机密切相关,但本文讨论的并不是数值风洞本身,而是更广泛意义上的实用性、概念、目的和成果。
摘要低速亚音速测试 • WBF 研究和开发风洞是一个闭式回流连续流动回路。 • 特性(适用于一个大气压运行,80% 功率) 马赫数:0 到 0.25 雷诺数:0 到 1.8 x 10 6 每英尺 动压:0 到 67 psf 温度:0 到 100°F 测试区域:10 英尺 x 7.5 英尺椭圆形部分,15 英尺长 • 典型测试项目包括飞机开发、非稳定翼型流场研究、发动机舱诱导涡流生成、地平面影响、阵风相互作用、旋翼。 • 数据采集系统包括与计算机系统相连的力天平,用于在线记录、存储和检查原始、简化或图形显示的输出。 32 通道数字数据记录 • 多用户设施允许同时进行数据比较或操作,以及相关计算以进行分析。 • 压力测量系统包括三个计算机控制的 Scani 阀和 Setra 传感器,其平坦频率响应可达 800 Hz。• 外部六分量主机械平衡适用于升力负载达 3000 磅的支柱式模型。内部应变计平衡适用于负载达 100 磅的支柱式支架、模型组件等。• 辅助空气供应用于推进装置、喷射、边界层控制等。在 60 或 125 psi 时,连续流速分别为 1.5 或 0.5 lb/sec,在 100 psi 时间歇为 4 lb/sec,在 22 psi 时为 9 lb/sec。• 阵风发生器系统用于纵向和水平阵风。近似值
术语“数值风洞”,也称为“数字风洞”。在互联网上搜索这些术语通常会找到超级计算机系统,例如日本国家航空实验室 (NAL) 部署的“数值风洞系统”。这是前科学技术厅下属的一个实验室,后来并入日本宇宙航空研究开发机构 (JAXA)。第一个基于超级计算机的数值风洞于 1993 年推出。作为第一代并行矢量超级计算机,它成为世界上最优秀的计算系统,跻身 TOP500 榜单 (http://www.top500.org) 之列,并获得了戈登贝尔奖。尽管数值风洞与超级计算机密切相关,但本文讨论的并不是数值风洞本身,而是更广泛意义上的实用性、概念、目的和成果。
I. 简介 HIS 论文是北大西洋公约组织 (NATO) 牵头的研究系列论文之一,该系列论文探索了计算流体力学 (CFD) 方法在稳定性和控制分析方面的能力。本文介绍了一种通用无人作战飞机 (UCAV) 配置的动态风洞试验。在后续出版物中,我们将把 CFD 预测与这些实验测量结果进行比较。北约科学技术组织 (STO) 应用车辆技术 (AVT) 任务组 201 以前身任务组 AVT-161 1-9 的研究工作为基础。AVT-201 的另一个重点是预测偏转控制面效应。本文介绍了从一系列具有多个后缘控制面的通用 UCAV 配置的风洞试验中获得的受迫振荡实验数据。我们还收集了一组补充静态数据,并在参考文献 10 中报告。