“不来梅的空客低速风洞 (LSWT) 可在内部设施中进行风洞测试,并为内部和外部设施提供带有仪器的风洞模型。其使命还包括设计和监控风洞新发动机模拟器的制造和校准。在不同风洞中进行测试活动后,需要对用于风洞测试的探头进行连续控制。多孔压力探头(例如五孔和七孔探头)是经济高效的设备,可在不同的风洞测试中提供准确的流量测量。所有使用的探头都经过校准,一旦它们用于风洞测试活动,它们将由 DENSO VM-60B1G-V 控制,以确定所需的新校准,或继续进行更多测试活动(保持结构特性)。通过将探头放置在已知速度大小和方向的流场中来执行此控制。运动由 DENSO VM-60B1G-V 实现,并将新特性值与校准值进行比较。
然而,与所有公司一样,时间和成本是决定使用 FDM 的关键因素。当 BLWTL 构建带有压力接头的建筑模型时(图 5),它不再需要手动钻孔。大型模型上的压力接头位置可能多达 1,000 个,钻孔既费时又繁琐。BLWTL 通过将压力接头孔直接合并到 CAD 模型中并在 FDM 模型中构建它们来消除此步骤。由于它使用 WaterWorks,因此只需从每个压力接头孔中冲洗掉支撑材料即可。这种技术使创建风洞模型所需的时间和劳动力减少了高达 66%。总体而言,与以前的方法相比,BLWTL 的平均成本节省了约 30%。凭借风洞模型的这种节省,该实验室估计它仅在三到五年内就收回了每台 Fortus 系统的成本。
然而,与所有公司一样,时间和成本是决定使用 FDM 的关键因素。当 BLWTL 构建带有压力接头的建筑模型时(图 5),它不再需要手动钻孔。大型模型上的压力接头位置可能多达 1,000 个,钻孔既费时又繁琐。BLWTL 通过将压力接头孔直接合并到 CAD 模型中并在 FDM 模型中构建它们来消除此步骤。由于它使用 WaterWorks,因此只需从每个压力接头孔中冲洗掉支撑材料即可。这种技术使创建风洞模型所需的时间和劳动力减少了高达 66%。总体而言,与以前的方法相比,BLWTL 的平均成本节省了约 30%。凭借风洞模型的这种节省,该实验室估计它仅在三到五年内就收回了每台 Fortus 系统的成本。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象形状简单,提供有限的创造性实验机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象是简单的形状,为创造性实验提供了有限的机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。