摘要:本文全面综述了飞机静态气动弹性效应预测与修正方法的研究进展,包括气动弹性的损伤与防护等。相似条件的确定和静态气动弹性缩放建模对于获得准确的气动特性具有重要的风洞试验意义。同时,相似的刚度分布、制造材料和加工工艺与飞机结构动力学模拟密切相关。详细描述了静态气动弹性模型的结构布局,包括板式、梁式、轴承蒙皮式和全结构相似式。此外,风洞和试验技术在静态气动弹性试验中也起着重要作用。值得注意的是,计算流体动力学(CFD)和计算结构动力学(CSD)在流场气动弹性分析中的应用越来越受到研究者的重视。详细介绍了飞机气动弹性数值模拟的研究现状和关键技术。另外,本文还简要介绍了静态气动弹性预测与修正方法,特别是目前应用广泛的K值法。
摘要:设计并测试了一种用于现场测量动态充气机翼上下表面内外压差的仪器系统,揭示了充气翼型的空气动力学特性的重要见解。风洞试验证明了低压差读数在 1.0–120 Pa 范围内的全部能力,覆盖 3 至 10 m/s 的速度,攻角从 − 20 到 +25 ◦。读数稳定,在运行飞行范围内的变化系数为 2% 至 7%。实验数据证实了底部前缘再循环气泡的出现,与低雷诺数状态和进气口的存在有关。它支持基于局部压力差的空气动力学特性新方法的提议,该方法考虑了受限的气流结构并提供与实际观察相符的升力估计。结果也与之前按照不同策略获得的数据兼容,并被证明可以有效地参数化膨胀和失速现象。总体而言,该仪器可以直接用作飞行测试设备,并且可以进一步转换为崩溃警报和预防系统。
进行了风洞试验,以表征 RAE 2822 超临界翼型并实施主动流动控制技术。试验在各种亚音速和跨音速马赫数和攻角下进行。沿四分之一弦轴连接到翼型端部的两个称重传感器用于量化作用在翼型上的气动力。跨音速翼型已集成,控制技术已在佛罗里达州立大学 Polysonic 风洞中成功实施。本文介绍了一些初步实验结果,并描述了实施过程中获得的经验教训。油流可视化显示翼型吸力面上存在角涡,下表面存在楔形图案,这表明局部过渡流和湍流区域的组合,没有冲击或冲击非常弱。基准翼型上测量的升力系数远低于基于文献的估计值。这些结果表明,测试的翼型需要修改其纵横比和横截面积以适应设施。基于同流喷射的主动流动控制技术在改善气动性能方面显示出良好的前景。
2020年是充满挑战与机遇的一年。面对突如其来的新冠肺炎疫情,中国空气动力研究与发展中心在做好疫情防控的同时,全力推进科研工作,完成多项科研试验任务,取得了抗疫和科研“双胜利”。这一年,完成了C919宽体客机、高铁等航天飞行器300余项试验,国家重大科技基础设施大型低速风洞建成,一批重要设施加快建设升级,风洞试验能力、质量和效率显著提升。中国空气动力研究与发展中心牵头的国家级数值风洞项目取得重大进展,多款具有自主知识产权、性能一流的软件在全国发布并在全国推广应用,功能涉及网格生成、流场计算、数据后处理等。建立并实施了质量、环境、职业健康安全一体化管理体系,进一步促进了各类科研试验的标准化;学术交流不断深化,中心科研人员以线上方式参加了5场国际会议,包括:
图 1:NACA 空中数据臂设计,在 UTSI Cessna 210 右翼尖配备流动角叶片。 .............................................. 1 图 2:惯性(东北向下)坐标系。来源:USAF TPS [6]。 .............................................................................. 5 图 3:机身固定坐标系。来源:USAF TPS [6]。 ............................................................................................. 6 图 4:流动角参考系。u、v、w 分别是机身固定参考系上 x、y、z 方向的速度矢量。来源:NASA [9] ......................................................................................................... 8 图 5:X-Z 轴上的攻角、俯仰角和飞行路径角视图。来源:波音航空杂志 [11]。 ... 9 图 6:不同情况下攻角和俯仰角的差异 [12]。 ............................................................................. 9 图 7:由于升力要求,平飞中的攻角会发生变化 [12]。 ................................................................ 9 图 8:估算 Oswald 效率因子的方法。来源:Roskam [15]。 .............................................................. 16 图 9:阻力系数随马赫数变化的典型变化。来源:Kroo [16]。 .............................................................. 18 图 10:烟气风洞试验中机翼上方的上洗流。来源:Babinksy [17]。 ..............................................................
摘要:屋顶压力统计数据是 ASCE 风荷载设计条款的基础,通常通过边界层 (BL) 风洞测试获得。然而,人们已经认识到一个长期存在的问题——不同 BL 风洞报告的结果不一致。请注意,这些 BL 风洞测试往往遵循标准设置,使用既定的仪器和设备测量缩小的建筑模型上的流量和压力,并使用通用方法处理数据。导致报告的压力统计数据存在不可忽略的差异的主要因素是什么?考虑到风洞数据在作为 CFD 工具验证的参考案例方面的作用越来越大,必须严格评估现有的风洞压力数据,并深入了解风工程界的这一突出问题。这项工作将重点关注 NIST 和 TPU 气动数据库中存档的模拟 BL 流入的孤立低层建筑模型的选定案例的屋顶压力数据的时间序列。结果包括瞬时压力、平均和 RMS 表面压力的直方图,以及由 Gumbel 模型根据屋顶上的压力抽头位置和风向估计的峰值压力。我们希望找出风洞测试中导致结果差异的主要因素,并帮助解决这一问题。关键词:风洞测试、数据不一致、NIST 气动数据库、TPU 气动数据库 1.简介 风洞测试创建了一个受控的、理想的、模拟的边界层流动条件,并使用缩放的建筑模型来重现感兴趣的风结构相互作用。对于风荷载试验,主要测量量包括局部表面压力和/或总力和力矩,以及模型所受的流入特性(风速剖面、湍流水平和频谱)。边界层风洞试验极大地促进了风荷载设计。然而,风洞试验结果的不一致性一直是风工程界公认的长期问题。例如,对来自六个著名风洞实验室的风压数据的变异性进行了比较,得出结果的变异系数在 10% 到 40% 之间(Fritz 等人,2008 年)。风洞结果的差异可以归因于风荷载测量和估计的多个方面。风洞可能受到实现 ABL 风的全光谱的能力限制(由于物理尺寸和缺少粗糙度细节而切断大尺度和小尺度的湍流结构)、相对较低的 Re 数范围以及与特定设备相关的不确定性。就低层建筑模型而言,高度与边界层气动粗糙度(H/z 0 Jensen 数)的比率在实用上非常具有挑战性。建筑特征和表面纹理难以建模,这可能会极大地影响表面的关键流动分离、重新附着和涡流发展
Daeil Jo 和 Yongjin (James) Kwon 工业工程,亚洲大学,韩国水原 电子邮件:j11129@naver.com,yk73@ajou.ac.kr 摘要 —随着公众对无人机兴趣的增加,无人机正在成为第四次工业革命时代的重要技术领域之一。对于无人机来说,固定翼类型是有利的,因为它比多旋翼类型具有更长的飞行时间,并且速度更快。然而,它需要一个单独的、漫长的、无障碍物的着陆区,这在城市地区很难找到。此外,固定翼型无人机不容易安全着陆。正因为如此,对垂直起降型无人机的需求正在上升。本研究的目的是设计和开发一种能够垂直着陆和起飞的垂直起降飞机,并在垂直、水平和过渡飞行过程中具有适当的推力和升力。我们制定了规范化的无人机开发流程,为开发过程提供理论指导。为了确定垂直起降飞机的气动特性,我们采用了 3D CAD 和 CAE 方法,可以模拟风洞试验以获得最佳气动效率。使用开发的流程,我们确定了构成无人机的内部模块的标准,并且可以考虑适当的重心来组装机身。我们进行了 SW 设置以进行飞行调整,并能够相应地进行飞行测试。在飞行体验中
风力涡轮机比例模型的风洞试验是评估风力涡轮机空气动力学的一种经济有效的方法,可节省时间、成本并避免与全尺寸试验相关的不确定性。然而,风洞试验转子缩放程序的主要限制是无法将雷诺数与全尺寸相匹配。本文介绍了 DTU 10 MW 风力涡轮机风洞 1/75 比例转子的非平凡气动弹性优化设计、实现和实验验证。更具体地说,这项工作是为浮动式海上风力涡轮机 (FOWT) 应用而开发的(Lifes50+,Bayati 等人,2013 年,2014 年);尽管如此,所报告的方法和得出的结论在风力涡轮机转子缩放方面具有普遍有效性。最近也在风力涡轮机缩放方面做出了类似的努力(Bredmose,2014 年)。此外,在(Bottasso 等人,2014 年)中可以找到对缩放效应的深入分析,该分析涉及米兰理工大学风洞的先前活动:这项工作涉及气动弹性模型设计程序的定义,并且在推力和扭矩值匹配方面获得了良好的结果,并且正确缩放了叶片结构行为,同时考虑了弯曲 - 扭转缩放(Campagnolo 等人,2014 年)。
摘要:通过螺旋桨设计方法与粒子群优化 (PSO) 相结合,开发了一种降低螺旋桨驱动飞机能耗的航空结构算法。优化过程中考虑了多种螺旋桨参数,包括每个螺旋桨截面的翼型几何形状。螺旋桨性能预测工具采用收敛改进的叶片元素动量理论,该理论由从 XFOIL 和经过验证的 OpenFOAM 获得的翼型气动特性提供。根据实验 NACA 4 位数据估计失速角校正,并在出现收敛问题时使用。对气动数据进行校正以考虑压缩性、三维、粘性和雷诺数效应。根据实验数据拟合提出了旋转校正系数。采用基于欧拉-伯努利梁理论的结构模型,并根据有限元分析对其进行验证,同时讨论了离心力的影响。进行了一个案例研究,将弦长和螺距分布与涡流理论的最小损失分布进行了比较。使用印刷螺旋桨进行风洞试验,以得出整个程序的可行性以及 XFOIL 和 CFD 最佳螺旋桨之间的差异。最后,将最佳 CFD 螺旋桨与具有相同直径、螺距和运行条件的商用螺旋桨进行比较,显示出更高的推力和效率。