BRE 的许多人都以某种方式帮助了我,包括支持人员和科学家。后者中的一些人帮助将桅杆拖上休姆角一侧,其他人也给了我有用的建议和帮助。风荷载部门负责人 Paul Blackmore 帮助我进行了许多有关这项工作理论方面的讨论,并监督了风荷载剖面实验和风荷载隧道测试。我要感谢动力学部门的现任和前任同事:Malcolm Beak、John Boughton、Carolyn Valton 和 Tony Voods,他们不仅多次往返休姆角,还上上下下,特别是在升降机失灵后携带重型设备的那些旅行。我特别要感谢动力学部门负责人 Brian Ellis 为这个项目提供的所有建议、帮助和辛勤工作。我还要感谢建筑研究机构首席执行官在战略研究计划下支持这项工作并允许发表结果。
第 8 章:垂直容器的风荷载.................................................................................178 8.1 介绍...................................................................................................................178 8.2 实验步骤..............................................................................................................179 8.2.1 速度剖面.................................................................................................180 8.2.2 纵向湍流强度和长度尺度.......................................................................181 8.2.3 风洞模型.................................................................................................182 8.2.4 风洞阻塞.................................................................................................184 8.2.5 风洞压力梯度.................................................................................................185 8.2.6 雷诺数效应....................................................................................................185 8.2.7 仪器................................................................................................................188 8.3 测试结果................................................................................................................190 8.4 测试结果在风荷载计算中的应用................................................................195 8.5风洞试验结果与桌面方法的比较......................................................................203 8.6 本章摘要和结论...............................................................................................208
摘要 — 风荷载是设计结构时要考虑的最重要因素之一。在先前的研究中,使用了多种方法来测试和测量风荷载——全尺寸测量、风洞测量、分析模型和计算流体动力学 (CFD)。在这些方法中,一些研究人员选择了不同类型的参数来量化风荷载。虽然一些参数仅关注风荷载的一两个方面,但 CFD 模拟提供了对建筑物对风荷载响应的更全面测量。除了 CFD 的定量测量外,其 3D 可视化轮廓功能还可以提供有关风荷载的更详细信息,这可以极大地帮助建筑设计和设计优化。关键词— 3D 可视化轮廓、计算流体动力学 (CFD)、压力系数、Strauhoul 数、风荷载、风洞。
本研究的目的是:(1)修订 TxDOT 标准中关于公路标志、灯具和交通信号结构的风荷载部分,以及(2)制定策略以减轻受横风振动影响的单桅交通信号结构中的大振动。第一个目标是通过为德克萨斯州开发新的设计风速图来实现的。最新风工程技术被纳入修订后的设计标准中。通过进行地下水位、牵引水箱和实地研究,对发生在 5 至 15 英里范围内的稳定风中的横风振动问题有了更好的了解。振动归因于一种舞动现象,这种现象主要发生在风从带有背板的交通信号灯背面垂直吹向桅杆臂时。最有效的缓解措施是在信号灯上方安装一个水平翼。当桅杆臂尖振动超过 40 em 时,TxDOT 维护人员应安装一个翼。
在过去的 30 到 35 年间,许多国家对结构的风荷载进行了大量的研究。在期刊和会议论文集中,已发表了数千篇有关该主题各个方面的研究论文。在许多国家,风荷载控制着许多结构的设计,但即使在这些国家,尽管可用的材料非常丰富,但执业工程师对风荷载的了解和理解并不普遍。为什么会这样?可能有几个原因。该主题的多学科性质 - 涉及概率和统计、气象学、钝体的流体力学和结构动力学,这无疑对擅长分析和设计名义静态荷载下的结构的结构工程师来说是一个障碍。大学和学院的课程通常不教授该主题,除非作为本科生最后一年的选修课或研究生课程,尽管设计课程中经常会接触到风荷载实践规范或标准。与许多学科一样,风荷载专家和研究人员使用的术语可能会让许多非专业人士望而却步。本书是为结构工程师编写的,基于多年来与该行业客户合作的经验。我希望它也能在大学高级课程中派上用场。虽然还有其他几本书是关于这个主题的,但在这本书中,我试图填补空白
1.1 研究必要性 1 1.2 目标 1 1.3 文献综述 2 1.4 研究方法 6 常规标志上的风荷载 7 非实体标志上的风荷载 13 与设计风发生频率相关的经济和安全方面 19 常规和非实体标志的经济学 20
摘要 — 风荷载是结构设计时需要考虑的最重要因素之一。在之前的研究中,人们使用了多种方法来测试和测量风荷载——全尺寸测量、风洞测量、分析模型和计算流体动力学 (CFD)。在这些方法中,一些研究人员选择了不同类型的参数来量化风荷载。虽然一些参数只关注风荷载的一两个方面,但 CFD 模拟可以更全面地测量建筑物对风荷载的响应。除了 CFD 的定量测量外,其 3D 可视化轮廓绘制功能还可以提供有关风荷载的更详细信息,从而极大地帮助建筑设计和设计优化。关键词 — 3D 可视化轮廓绘制、计算流体动力学 (CFD)、压力系数、Strauhoul 数、风荷载、风洞。
本论文的目的是演示如何对水平轴风结构失效进行疲劳和力学理论分析。实现这一目标所需的计算链特别长,原因有两个:首先,风速随时间随机变化;其次,桅杆的振动幅度由于其固有振动频率而被放大。整整一章致力于对空间和时间上的风速进行建模。同一章演示了如何从功率谱密度(PSD)函数合成随机信号。转子的轴向力是风力结构水平轴上最重要的载荷。该力与风速呈非线性关系。这意味着需要使用谱估计技术从信号中确定轴向力的 PSD。 Thomson Multitaper 方法被证明对于该应用是最令人满意的。桅杆位移的 PSD 是通过将结构系统的承受能力与代表所有载荷的力的 PSD 相关联来确定的。最终可以从其 DSP 合成约束信号。讨论并应用了称为雨流的加载周期计数技术。事实上,压力信号具有可变幅度