从典型的风速参数创建随机风速轮廓。然后将风轮廓用于CASPOC连接的风力涡轮机的模拟。
摘要: - 基于PMSG的风力涡轮机的建模是这项研究的主题。在各种风速下,涡轮机的数学建模是这项研究的主要主题。控制风力涡轮机和PMSG的可变速度功能的基本电路方程用于创建风力涡轮机模型。风速不是恒定的,它取决于环境条件,风速中的变化可以通过螺距角控制器控制,并且在操作风速下产生所需的恒定电力。本文是关于风力涡轮机的数学建模及其不同特征从不同参数获得的。使用MATLAB/SIMULINK对独立的风力涡轮机系统进行了建模和分析,并且结果满足了设计规范。
有机物的含量[ - ]动物的总数[ - ]每日自治[ - ]全年植物的总操作时间[ - ]空气密度[kg/m 3]风速[m/s]每日电能需求[kWh/day]在Anemometer [m/s]下风速[m/s]!水的密度[1000 kg/m 3]“#枢轴高度处的风速[m/s] $肥料中的干物质含量[ - ]电池效率[%]缩写%和转换器的效率[%] AC替代当前%'的效率'
图 2-1 哈祖斯飓风模型方法示意图..................................................................................................................... 2-3 图 2-2 哈祖斯飓风分析层次..................................................................................................................................... 2-6 图 4-1 平均风廓线......................................................................................................................................................... 4-4 图 4-2 所有 MBL 情况下 RMW 附近的水滴的平均和拟合对数廓线............................................................. 4-6 图 4-3 RMW 附近 10 米处海面阻力系数随平均风速的变化............................................................. 4-7 图 4-4 RMW 外情况的平均风廓线和拟合对数廓线............................................................................................. 4-8 图 4-5 RMW 外情况 10 米处海面阻力系数随平均风速的变化......................................................................... 4-9 图 4-6 10 – 30公里和 30 – 60 公里 RMW 情况..................................................................................................................................................... 4-10 图 4-7 回归模型、Kepert(2001)模型与观测到的边界层高度的比较......................................................................................................................... 4-13 图 4-8 10 至 30 公里和 30 至 60 公里 RMW 情况下 RMW 附近观测到的和建模的速度剖面......................................................................................................... 4-14 图 4-9 在 RMW 附近采集的投掷探空仪数据的建模风速与高度的平均误差......................................................................................... 4-14 图 4-10 RMW 附近 10 米处平均风速与边界层顶部平均风速的建模与观测比值比较......................................................................................................................... 4-16 图 4-11 投掷探空仪数据的建模风速与高度的平均误差在 RMW 区域外拍摄的照片 ............................................................................................................................................. 4-16 图 4-12 完全过渡的陆地平均风速(z 0 =0.03 米)与水面平均风速(z 0 =0.0013 米)与边界层高度的比值 ............................................................................. 4-18 图 4-13 ESDU 和修改后的 ESDU 风速过渡函数 ............................................................................................. 4-18 图 4-14 使用平板模型计算的朝向页面顶部移动的飓风的喷射强度 ............................................................................................................................................. 4-20 图 4-15 显示模拟和观测到的风速、表面气压和风向的示例图......................................................................................................................................... 4-22 图 4-16 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-23 图 4-17 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-24 图 4-18 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(结束)......................................................................................................................... 4-26 图 4-20 比较图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大地面峰值阵风风速示例比较 ............................................................................................................. 4-29 图 4-22 已消除的剖面示例 ......................................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例 ......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-37
▪ 高能源潜力: 海上风速通常比陆上风速更快、更稳定,从而能够可靠地生产能源。 ▪ 靠近人口中心: 风速强的地区通常位于人口稠密的地区附近,因此可以战略性地选择租赁区域。 ▪ 土地利用效率: 宝贵的陆上土地可以自由用于其他用途,同时考虑到选择发电地点的机会成本。 ▪ 创造就业机会: 随着行业的发展,工程师、金属工人、电工、涡轮机技术员和许多其他职业的多元化劳动力将供不应求。
摘要:本研究探讨了埃塞俄比亚风速与风速的气候协变量和空间元素的相互作用。它打算使用气象数据集在未观察到的空间点上推断风的潜在斑点。我们应用了一个组合的动态空间面板自回归随机效应模型,其位置的空间重量是空间重量。这种空间重量优于其他空间权重以捕获空间依赖性并提高有效估计。结果描述的是,平均风速在经度范围和纬度跨度上有所不同,受气候协变量的影响,并在一年中的几个月中波动。风速强度沿该地区的中部,东部和东北部高。在2月,3月,6月和7月相对于9月和10月的几个月中也很高。证据表明,夏季和春季风速较高,但在冬季和秋季季节相对较低。这意味着风速主要是在雨季结束和开始之前的风速很高。模型估计还表明,平均风速在相邻站点和时间点之间在空间上相关。特别是,平均风速随海拔和温度而增加,但随着降水的增加而降低。阳光级分和相对湿度具有负面影响,但它们的影响在统计学上并不显着,p = 0.2496和p = 0.4484。总而言之,建议使用这些方法来预测显示随机过程的数据。关键字:贝叶斯推论;动态空间面板自回归模型,预测,
图 3-1 显示了当前 WTS 配置的总体布置和特性。它设计用于年平均风速为 14 英里/小时(30 英尺处测得)(轮毂高度为 20 英里/小时)的场地。当轮毂高度(200 英尺)的风速超过 14 英里/小时时,系统会发电。当风速为 27.5 英里/小时或更高时(轮毂高度),系统会产生 2500 千瓦的额定功率。当风速超过 45 英里/小时(轮毂高度)时,系统会关闭以避免高运行负荷情况。在平均风速为 14 英里/小时的场地,年能量输出接近 1000 万千瓦时。这个能量输出加上估计的第 100 个生产单元的交钥匙成本 1,720,000 美元(以 1977 年的美元计算),预计母线的电力成本为 3.3 吨/千瓦时。在运行期间,风力涡轮机通过标准输电线与公用电网相连。
减去乘客座位,旋翼机可以在地面附近安全飞行的最大重量、高度和温度,最大风速根据 CS 29.143(c) 确定,并且可能包括其他已证实的风速和方位角。操作范围必须在旋翼机飞行手册的限制部分中说明。
