1 除非另有说明,所有传感器规格在 25°C、Vdd = 5V、绝对压力 = 966 mbar 和水平流动方向有效。 2 slm:在标准条件下(T = 20 °C,p = 1013.25 mbar)测量的质量流量,单位为升/分钟。 3 对于“典型值”,CpK 目标为 0.67(95% 的传感器在典型值限值内)。 4 对于“最大值”,超出此限值的传感器将不发货,CpK 目标为 1.33。 5 包括偏移、非线性、滞后。 6 总精度/噪声水平/分辨率是偏移和跨度精度/噪声水平/分辨率的总和。 7 精度适用于 T(气体)=T(芯片)。 8 %mv = % 测量值 = % 读数。 9 噪声水平定义为单个传感器读数的标准偏差,以全采样率测量(典型值:噪声水平的平均值;最大值:至少99.99% 的传感器的噪声水平低于指示值)10 如果适用,这些影响需要添加到初始值中
a。成员的参与和合规性必须记录在医疗记录中,并且; b。密集的多学科计划可以亲自或远程,可以是团体或个人,并且; c。必须专注于营养,体育锻炼和行为修改,并且; d。在此过程之前,至少需要十二个密集的多学科专业提供者访问。
这架波音 737-300 客机从葡萄牙法鲁起飞,执行常规客运飞行后,正在进近伯恩茅斯机场。在仪表着陆系统进近初期,自动油门脱离,推力杆处于怠速推力位置。机组人员既没有下达脱离指令,也没有意识到脱离,整个进近过程中,推力杆一直处于怠速状态。由于飞机已完全配置为着陆,空速迅速下降到低于适合进近的值。机长接管控制并开始复飞。在复飞过程中,飞机过度上仰;机组人员试图降低飞机俯仰度的努力基本无效。飞机最大俯仰角达到 44º,机头上仰,指示空速降至 82 节。然而,机组人员能够恢复对飞机的控制,并在没有发生进一步事故的情况下完成后续进近和在伯恩茅斯着陆。
近年来,使用 EFB 协助飞行员完成驾驶舱任务的情况大大增加。如今,航空市场上有许多硬件和软件应用程序。由于便携式 EFB 系统的使用趋势日益增加,国家航空当局 (NAA) 已经看到对 EFB 批准的需求不断增加,因此对完成此任务所需的专业知识的要求也日益增加。制定标准化评估程序将支持 EASA 成员国成功实现和维持高水平的安全。该项目的目标是进行一项研究,以选择国家当局目前用于授予 EFB 批准的最佳可用评估实践,并提出明确的评估指南和易于使用的建议,以制定与性能和质量与平衡软件相关的标准化 EFB 批准程序。在欧洲监管机构中分发的调查反应有限;但是,获得了有关当前 NAA 批准程序的信息。根据大多数 NAA,AMC 20-25 中描述的合规流程是足够的,但是,NAA 报告了批准过程中的几个困难,并对未来的批准流程提出了建议。总体而言,所有 NAA 都使用内部专业知识来评估是否符合 AMC 20-25,以处理运营商的批准请求。这表明 NAA 特别关注不同的领域。NLR 对使用(起飞和着陆)性能和 EFB 上的质量平衡应用程序相关的风险进行了危害识别和风险评估。此评估包含未缓解的风险。此次 NLR 评估的目的是深入了解可能存在风险的领域,监管机构在评估运营商风险评估时可以使用这些信息。第二个目标是为监管机构提供指南,说明运营商应采取哪些缓解措施。在评估调查回复和访谈中描述的监管机构的批准程序后,推断“最佳实践”是不可行的。但是,基于承包商在飞行运营和认证方面的内部专业知识,结合调查和访谈,本报告得出并记录了可用于 EFB 运营审批流程的指导。其中包括监管机构对产品的熟悉程度以及与运营商建立职权范围、使用 NLR 风险评估和测试指南来支持性能计算算法的验证。
美国宇航局艾姆斯研究中心在 20 世纪 90 年代初对超音速商用客运斜翼全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有丰富经验的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保将现实世界的设计约束纳入研究,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜翼全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由美国宇航局艾姆斯研究中心的团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。
术语表 机场移动地图显示器 一种软件应用程序,显示机场地图并使用导航源在地面上显示飞机当前位置。 消费设备 主要用于非航空用途的电子设备。 受控便携式电子设备 受控 PED 是指受使用它的操作员管理控制的 PED。这将包括但不限于跟踪设备在特定飞机或人员的分配情况,并确保不会对硬件、软件或数据库进行未经授权的更改。 EFB 系统的数据连接 EFB 系统的数据连接支持 EFB 与其他飞机系统(如航空电子设备)之间的单向或双向数据通信。本定义不涵盖 EFB 之间的直接互连或 EFB 与地面系统之间的直接连接,如 T-PED(如 GSM、蓝牙)。 电子飞行包 一种供驾驶舱机组人员使用的信息系统,允许存储、更新、传送、显示和/或计算数字数据,以支持飞行操作或职责。 EFB 管理员 EFB 管理员是运营商任命的人员,负责公司内部 EFB 系统的管理。EFB 管理员是运营商与 EFB 系统和软件供应商之间的主要纽带。EFB 主机平台 在考虑 EFB 系统时,EFB 主机平台是设备(即硬盘
当引用 EFB SARPs 第 2.4.17.1、4.12.1、4.17.1、6.24.1 段时,应理解 EFB 不会对飞机/直升机系统的性能产生不利影响。EFB SARPs 第 6.25.1 和 6.25.2 段述及各国和运营商在 EFB 硬件和 EFB 功能方面的责任。如附件 6 所述,本手册通过提出指导意见来理解对 EFB 系统及其常用功能进行运行评估的要求的意图和目标,从而对 SARPs 进行了补充。在适当情况下,该指导意见还旨在支持运营商所在国授予特定批准。鼓励运营商使用 EFB 系统作为信息来源。本手册不涉及 EFB 适航问题;这些问题在附件 8 — 航空器适航性中有所涉及。并非所有软件功能都符合 EFB 功能的标准。手册中提供了进一步的指导(见第 4 章)。
法国商务署是支持法国经济国际发展的国家机构,负责促进法国企业的出口增长,以及促进和推动国际对法国的投资。它宣传法国的企业、商业形象和作为投资地点的全国吸引力,并运行 VIE 国际实习计划。法国商务署在法国和全球 58 个国家/地区拥有 1,500 名员工,他们与合作伙伴网络合作。自 2019 年 1 月起,作为国家出口支持体系改革的一部分,法国商务署已让私人合作伙伴负责支持以下市场的法国中小企业和中型企业:比利时、匈牙利、摩洛哥、挪威、菲律宾和新加坡。如需更多信息,请访问:www.businessfrance.fr @businessfrance.fr