近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
摘要 高效的流动性是决策者面临的一个关键问题。允许人员和货物自由流动对于经济繁荣和可持续生活至关重要。汽车、火车、轮船、飞机和太空火箭是让世界各地的差异转化为财富的手段。所有这些系统都被认为是动态系统,自由度越高,它们的多变性和不可预测性就越强。为了在这些复杂的环境中控制操作并应对持续有效的问题解决,需要一个可靠的安排。安全是润滑液,它使这种复杂的运输机器有机会工作和发展。本文的目的是分析航空安全与自动化理念之间的联系,重点关注人机交互,特别是在引入新的飞机制造概念之后。自动化为提高安全性做出了贡献,但最终揭示了一些威胁,必须彻底调查和缓解这些威胁,以避免安全水平下降。
激光诱导的分解光谱(LIBS)是一种简单,快速和敏感的分析技术,已在许多科学学科(例如,化学,物理学,地质学,工程,材料科学,聚合物科学,环境科学,环境科学和金属科学)中使用了近两十年。libs在行业中变得非常流行,尤其是由于便携式仪器的可用性和快速分析,在钢,汽车和飞机制造中变得非常受欢迎。由于该技术可以同时分析光和重元素,因此Libs因其食品分析能力而引起了全球关注,以表征食品中存在的微量营养素,基本成分和有毒物质。没有其他技术在短时间内提供此类综合分析数据,而无需进行任何实质性样本处理。本文回顾了LIB近年来在食品分析中的应用,并讨论了其提高食品成分表征的潜力。
质量对于飞机制造至关重要。在新飞机开始大规模生产之前,新部件和测试飞机要经过严格而漫长的测试,然后才能获得欧盟航空安全协会 (EASA) 等行业机构的认证。其中一些测试可能是在极端温度下驾驶新飞机 - 那么您想成为一名试飞员驾驶新飞机穿越沙漠吗?或者您可以留在地面实验室进行测试以确保您的飞机可以安全飞行。飞机应该可以使用大约 30 年,然后才会出现金属疲劳并需要退役。但是,就像汽车必须进行 MOT 一样,飞机也需要在飞行一定小时数后进行检查。在这些检查期间,飞机会得到维护、维修,并且可能会进行大修。“维护、修理和大修”(MRO)是航空航天业的重要组成部分。在普雷斯蒂克,有一个全球公认的 MRO 中心,而且每年都在增长。这意味着当你完成中学、学院或大学学业后,会有更多的工作机会。
国际航空航天工业协会(ICCAIA)和国际商业航空委员会(IBAC)成员致力于在所有领域的进步,包括空气动力学,推进,飞机系统和结构技术,飞机制造技术1和所有类型的潜在能源(可持续航空燃料和水力发电,电力和水力发电,电力和水力学)。飞机技术集中于提高效率和碳排放量的减少,以减少航空在长期内的气候影响。在短期内,可持续航空燃料(SAF)在脱碳中具有比其他缓解措施更大的作用,因为这些“下降”燃料将减少数千架已经飞行的飞机的碳排放。在2021年,航空运输行动集团(ATAG)发布了其第二版Waypoint 2050报告1。本报告强调了其成员对2050年净零碳排放运营的承诺。由IBAC代表,通用航空制造商协会(GAMA)2,国家商业航空管理局(NBAA)3及其全球成员代表的商业航空,同样致力于2050年通过商业航空对气候变化(BACCC)(BACCC)4。除了展示行业的
让我们集中精力从中吸取教训,为未来的计划做准备。我们电气领域工具的成熟度及其一致性是关键点。布线指标包括数十万米的电缆、连接、路由和支架的长度。这些数据是通过 IT 进行管理的。但至关重要的是,工具必须跟上工作方法的演变,特别是并行工程的演变。缩短周期不允许手动纠正不一致的情况。这些工具的改进正在进行中,它们今天已经在 A400M 项目上实现协调。修改的数量永远不会达到所希望的水平:这是线路高度灵活以及与飞机所有系统接口的后果之一。因此,在改进工具之后,有必要在生产提升之前考虑在工业化阶段由这些修改产生的周期。这是为了限制其影响。在飞机日益“电动化”的时代,系统的互连似乎已成为我们这个行业一项重要的、具有规模的专业。一个必须投入的职业。展望未来,我们要小心,确保在低成本国家开展必要的活动不会拉开我们与飞机制造客户装配基地之间的距离并降低其竞争力。我们的业务显然正处于新项目的关键路径上!
摘要 — 飞机制造、建筑和农业生产通常需要工人长时间保持不舒服的姿势,例如弯腰和跪下。我们介绍了一款名为 MantisBot Alpha 的可穿戴机器人,它由两个可扩展的机械臂组成,可以将工人支撑在靠近地面的位置,允许他们执行双手任务,并协助他们站立和跪下。这种新设计的关键部件是一种新颖的连杆机构,可以调整工人与地面的距离和躯干倾斜度。机构连杆参数经过优化,以便 a) 其扩展率足够高,为 1:2.43,可以将人体从地面推开并在不使用时完全收缩剪刀臂,以及 b) 它允许工人在较大的空间内伸展,同时 c) 它足够轻,便于穿戴。连杆机构还避免了标准剪刀机构中的奇异性问题。执行器设计提供了一个故障安全系统。已经制作了一个原型来证明该系统的可行性。关键词:人体增强、机器人额外肢体、外骨骼、机制设计、工业机器人
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2] 。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等,随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足高精度、高速度的飞行安全要求。
这块相邻的土地——超过 20 英亩——可用于建造两条跑道。新机场很快被称为 Command-Aire Field。如今,工业建筑依然矗立,而机场已成为褪色的记忆。为了继续飞机制造,麻省理工学院的一名年轻毕业生 Morton Cronk 被聘请来设计公司的第一款产品。这个阶段在 1927 年春天完成,一架飞机根据定义的规格制造而成。尽管外观漂亮,但飞行效果并不令人满意。需要一位更有经验的项目工程师来改善其飞行特性。尽管如此,还是在 1927 年 12 月 6 日提交了实验许可证申请。德国公民 Albert Vollmecke 在布伦瑞克工业大学获得了机械工程学位。毕业后,他在瓦尔内明德的恩斯特·亨克尔飞机制造厂找到了一份工作。后来,他作为恩斯特·亨克尔的代表来到美国,参与生产教练机的许可谈判。他对美国空军的先进技术印象深刻——