“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡空军 (RsAF) Chinook 直升机首次用直升机吊运陆军轻型攻击车 (LsV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而试飞员则忙于扫描 LsV 的视频记录以评估其稳定性,同时仔细聆听机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年巴耶利峇空军基地举行的 RsAF 开放日上,首次展示了空运 LsV 的新功能。可能相对不为人知的是,这些只是经过大量飞行测试后交付给 RsAF 的一些能力。在过去的三十年里,飞行测试在 RsAF 新功能的整合、测试和交付中发挥了至关重要的作用。
航空航天制造/制造能源数值方法 AME 320 空气动力学 AME 410 增材制造 AME 444 应用热力学 AME 431 数值流体力学 + 传热 AME 321 飞机性能 AME 489A Fab Tech 微型和纳米设备 AME 430 中级热力学 AME 463 使用 ANSYS 的有限元分析 AME 323 气体动力学 AME 442A HVAC 系统设计 AME 324C 航空航天结构 AME 442B 高级 HVAC 系统分析与设计 AME 425 航空航天推进 AME 445 可再生能源系统 AME 426 火箭推进 AME 446 燃料电池设计 AME 427 航空稳定性/控制。交通工具 AME 480 核能简介 AME 429 行星际任务设计 AME 457 轨道力学与太空飞行 AME 454 航天器姿态动力学与控制
“状态良好!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次通过直升机运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而试飞员则忙于扫描 LSV 的视频记录以评估其稳定性,同时认真听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年巴耶利峇空军基地举行的 RSAF 开放日上,首次展示了空运 LSV 的新功能。可能相对不为人知的是,这些只是经过大量飞行测试后交付给新加坡空军的一些能力。在过去的三十年里,飞行测试在整合、测试和交付新加坡空军的新功能方面发挥了至关重要的作用。
本章介绍了一种贴地飞行的改进方法。贴地(NOE)模式是最激动人心、最危险且通常最慢的模式。军用飞机在高负载情况下避免被对手发现和攻击时使用此模式。NOE 用于限制地面雷达、目标和控制系统的发现。雷达高度计(RA)或地形跟踪雷达(TFR)、地形感知和警告系统(TAWS)用于在 NOE 飞行期间识别飞行限制。在这里,当飞机处于贴地飞行状态时,速度和高度必须按照预先确定的速度保持平稳。地形跟踪雷达(TFR)从一开始就保持高度。因此,我们分析了通过扩展地形来提高飞机性能的问题,这些地形是由各航空当局提供的 1 。此外,还详细阐述了不同的 TAWS 作用模式、TAWS 中模式选择和进展的解释。本章展示了几种 TAWS 任务模式的 MATLAB 程序,以及从飞行模式二操作中模拟地形接近率过高的飞行路径。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次以直升机方式运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而测试指挥员则忙于扫描 LSV 的视频记录以评估其稳定性,同时仔细听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年在巴耶利峇空军基地举行的 RSAF 开放日上,空运 LSV 的新功能首次亮相。可能相对不为人所知的是,这些只是经过大量飞行测试后交付给 RSAF 的一些能力。在过去的 30 年里,飞行试验在新加坡空军新能力的整合、测试和交付中发挥了至关重要的作用。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次以直升机方式运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而测试指挥员则忙于扫描 LSV 的视频记录以评估其稳定性,同时仔细听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年在巴耶利峇空军基地举行的 RSAF 开放日上,空运 LSV 的新功能首次亮相。可能相对不为人所知的是,这些只是经过大量飞行测试后交付给 RSAF 的一些能力。在过去的 30 年里,飞行试验在新加坡空军新能力的整合、测试和交付中发挥了至关重要的作用。
“一切正常!”试飞员在飞机对讲机中呼叫,同时将测试的 Chinook 直升机稳定在所需的空速、爬升率和倾斜角参数范围内。这是新加坡共和国空军 (RSAF) Chinook 直升机首次以直升机方式运送陆军轻型攻击车 (LSV) 的飞行试验。试飞员必须飞行并将飞机性能和参数保持在非常严格的公差范围内,而测试指挥员则忙于扫描 LSV 的视频记录以评估其稳定性,同时仔细听取机上机组专家对飞行中负载行为的连续评论。快进一年后,在 2016 年在巴耶利峇空军基地举行的 RSAF 开放日上,空运 LSV 的新功能首次亮相。可能相对不为人所知的是,这些只是经过大量飞行测试后交付给 RSAF 的一些能力。在过去的 30 年里,飞行试验在新加坡空军新能力的整合、测试和交付中发挥了至关重要的作用。
本研究的目的是使 1986 年制造的 Weedhopper II 超轻型飞机 (ULA) (JC-24)) 适航、修改和提高其性能。本文对现有结构进行了改造,并利用现代材料和当前的施工技术进行了改进。这提高了飞机性能并消除了一些原始设计缺陷。整个航空电子系统已被更换。由于复合材料的使用导致总质量下降,因此确定了新的重心以确保飞机在改装后保持平衡。将飞机的重量保持在规定的限制内并确保飞机保持平衡对飞行安全有着深远的影响。飞机中心杆的位置发生了变化,以提高飞行员的人体工程学。随后,通过对发动机的检查,发现需要更换发动机托架,并进行了新托架的建造和生产。此外,选择了合适的螺旋桨,并检查了变速箱的传动比。对螺旋桨的性能进行了实验测量。为了平衡飞机,制造了垂直舵的调整器。在飞行测试之前,对飞机进行了平衡。
关键推动因素。定制进场概念利用机载能力与地面自动化相结合,计算下降轨迹,基于对下降阶段可能遇到的所有已知 ATC 限制的了解,从而解决了这些低效率问题。ATC 在飞机到达目的地之前协调并上传航路许可,其中包括任何速度和高度要求以及替代低空雷达引导所需的任何路径调整。航路许可旨在为飞机的 FMC 提供满足特定航班时间和分离需求的手段,同时允许飞机遵循最佳下降轨迹。地面自动化,例如泰雷兹提供的 ATM 系统或美国国家航空航天局 (NASA) 开发的航路下降顾问 (EDA),可根据复杂的交通限制和空域限制计算出省油的下降解决方案。它构建了一个定制的到达方式,以适应飞机性能限制、标准仪表到达(STAR)限制、调度和排序要求、中间交叉限制和战略
航空的非CO 2气候影响强烈依赖于排放时的大气条件。因此,可以通过计划轨迹重新列出具有重大气候影响的空域区域来减轻其相关的气候影响。识别这种气候敏感区域需要特定的天气变量。如果不考虑飞行计划中的不考虑,不可避免的不确定天气预报会导致飞机轨迹效率低下。当前的研究解决了在使用集合预测系统中特征的气象不确定性下生成强大气候友好的飞行计划的问题。我们基于强大跟踪最佳控制理论的概念引入了一个框架,以制定和解决拟议的飞行计划问题。气象不确定性对飞机性能变量的影响是使用配制的集合飞机动力学模型捕获的,并通过惩罚性能指数方差来控制。案例研究表明,所提出的方法可以产生气候优化的轨迹,对天气不确定性的敏感性最小。