航空的非CO 2气候影响强烈依赖于排放时的大气条件。因此,可以通过计划轨迹重新列出具有重大气候影响的空域区域来减轻其相关的气候影响。识别这种气候敏感区域需要特定的天气变量。如果不考虑飞行计划中的不考虑,不可避免的不确定天气预报会导致飞机轨迹效率低下。当前的研究解决了在使用集合预测系统中特征的气象不确定性下生成强大气候友好的飞行计划的问题。我们基于强大跟踪最佳控制理论的概念引入了一个框架,以制定和解决拟议的飞行计划问题。气象不确定性对飞机性能变量的影响是使用配制的集合飞机动力学模型捕获的,并通过惩罚性能指数方差来控制。案例研究表明,所提出的方法可以产生气候优化的轨迹,对天气不确定性的敏感性最小。
确定飞行包线极限所需的测试,该极限是风速和风向的函数。舰载飞行操作必须应对海洋环境特有的挑战,例如船舶运动和船舶上层建筑产生的尾流湍流。船舶尾流影响飞机性能和操纵品质特征,进而影响飞行员的工作量。船舶尾流特征因船舶而异,甚至同一艘船的不同相对风角也不同。在模拟环境中评估船舶尾流严重程度的能力使得在设计过程中解决与尾流相关的设计考虑因素,例如船舶几何布局和飞机飞行控制设计。NAVAIR 开发了一种桌面尾流分析工具,用于模拟飞机在受到计算流体力学 (CFD) 创建的精确船舶尾流速度时操纵特性。该工具已应用于多种船舶配置,以评估尾流对旋翼和固定翼飞机的影响。这项工作描述了构成尾流评估工具的实时飞机飞行动力学模型和 CFD 尾流模型,总结了验证和确认工作,并描述了用于评估船舶尾流严重程度的比较过程(针对示例船舶配置)。
AFLoNext 是一个为期四年的项目,由欧盟委员会在第七框架计划下资助。该项目的主要目标是验证和完善用于新型飞机配置的极具前景的流动控制和降噪技术,以在提高飞机性能和减少环境足迹方面迈出一大步。该项目联盟由来自 15 个国家的 40 个欧洲合作伙伴组成。构成 AFLoNext 科学概念的六条技术流之一涉及减轻和控制起飞和降落期间起落架区域的振动。起落架附近的结构部件,例如起落架壳壁、支柱或起落架门,通常会承受显著的动态载荷。这些载荷源于波动的气动压力和由此产生的结构振动。机身下方高度波动且复杂的气动流动行为会导致结构部件上的非稳定压力。本文介绍了用于预测此类动态载荷的 CFD 方法,并介绍了使用混合 RANS-LES 模型和格子波尔兹曼方法计算的一些初步结果。与飞行测试数据的比较验证了这些 CFD 模拟的真实性。
关于第一次世界大战的空中战役有很多研究:几乎所有研究都集中在战略和战术问题、飞机的技术发展或相关机组人员的技能和胆量上。飞行和空战的危险性对机组人员的身体和精神都产生了极限考验,并因此导致心理障碍,但这些研究却被忽视了。本研究检查并分析了 1914 年至 1918 年 RFC/RAF 在西线的行动,目的是确定机组人员因神经紊乱而失败的发生率。研究了影响机组人员对战斗的心理和精神反应的因素。评估了士气作为影响机组人员心理反应的一个因素的重要性,并探讨了领导、训练、疲劳和飞机性能和可靠性与心理紊乱导致的机组人员失败之间的关系。将本论文的结果与第二次世界大战机组人员的类似研究进行了比较。医疗和伤亡记录、官方历史和作战报告与个人记录和回忆录相结合,确定了机组人员心理障碍的主要致病因素及其在西线皇家飞行队/皇家空军的发病率。描述了被诊断为“飞行病”的机组人员的治疗和处置,并评估了结果。崩溃发生率与类似情况进行了比较
多电动飞机综述 A. A. AbdElhafez ∗ , A. J. Forsyth ∗∗ 摘要:多电动飞机 (MEA) 强调利用电力为非推进式飞机系统供电。采用 MEA 可实现许多优势,例如优化飞机性能并降低运营和维护成本。此外,MEA 减少了飞机的空气污染气体排放,这有助于解决气候变化问题。然而,MEA 对飞机电气系统提出了一些挑战,无论是在所需电量还是在电能的处理和管理方面。本文介绍了对 MEA 的综述。综述包括发电和电力系统架构的不同选项。关键词:MEA,发电,电力电子,电力系统 1.引言 近年来,航空工业在民用和军用领域都取得了巨大的进步,例如目前一些商用客机的重量超过 300 000 公斤,能够以 1000 公里/小时的速度不间断飞行 16 000 公里[1-4]。非推进式飞机系统通常由不同类型的二次动力组合驱动,例如液压、气动、电力和机械动力[1-3, 5- 7]。这些动力由不同的学科从飞机主发动机中提取。例如,机械动力通过从动轴从发动机获得,并由减速器驱动
本指令实施空军政策指令 21-1《军用物资维护》并与 AFI 21-101《飞机与设备维护管理》保持一致。它建立了要求并提供了报告所有指定飞机性能指标的程序。本指令与空中教育与训练司令部 (AETC) 及其下属单位的定期内部绩效审查相结合,支持衡量和评估维护绩效以及提高能力的目标。本指令定义了物流绩效术语,并具有报告和审查程序,以使 AETC 能够根据事实进行管理。本指令适用于所有 AETC 飞行训练活动。它不适用于 AETC 获得的空军预备役司令部或空军国民警卫队单位。本出版物可以在任何级别进行补充,但所有直接补充必须在根据 AFI 33-360《出版物和表格管理》进行认证和批准之前发送到本出版物的主要责任办公室 (OPR)。 (注:此要求不适用于当地维护操作说明。)最终发布后,各单位将向维护部门 (19 AF/LGPA) 提供其单位补充文件的副本。本出版物中免除联队/单位级别要求的权限在合规声明后以层级(“T-0、T-1、T-2 或 T-3”)编号标识。有关相关权限的描述,请参阅 AFI 33-360
1.1 显示器的历史 目前最先进的运输机上所采用的先进显示器反映了一个多世纪的发展历程。从莱特兄弟用作滑行指示器的绳子到现代电子玻璃驾驶舱,驾驶舱显示器一直是直接向飞行员呈现信息的手段。“这些飞机显示器是飞行员观察力量、命令和信息世界的窗口,而这些东西是无法作为自然发生的视觉事件或物体看到的”(Stokes & Wickens,1988)。直到出现了无视觉参考飞行的需求,以及随后“开发出可用作人工地平仪的陀螺仪”(Hawkins,1987),显示器的发展才受到认真关注。这种认真关注带来了重大进步。后来,另一项推动显示器发展的技术突破是电子技术的快速发展。这使得“伺服驱动仪表在 20 世纪 50 年代成为可能,然后设计师可以自由地将传感器放置在远离实际仪表的位置”(Hawkins,1987 年)。随着数字航空电子技术的不断发展,以及航空运输成为一种流行的旅行方式,人们越来越关注航空安全、人为因素和显示设计。随着飞机性能的提高,飞行员可以获得更多信息,显示器的数量和复杂性都在增加
环境设计空间(EDS)是为亚音速飞机设计和评估而设计的建模和仿真环境。将其与其他类似框架区分开来的主要功能之一是其执行飞机性能和尺寸,排气排放和噪音预测的能力。由于多个行业标准工具的集成,这三个要素被无缝执行。自2008年的构想以来,EDS已被用来支持多个研究实体和项目,以评估当前和未来的飞机概念和技术。与该领域的专家小组结合,在多年来对其结果和假设进行了校准和修订。因此,它经历了持续的发展,增强了其能力,不仅可以对传统的管子和翼飞机进行建模,还可以对非常规的配置进行建模。在撰写本文的撰写中,其功能范围超出了标准的单线轴和双线轴发动机,包括齿轮风扇,超高旁路涡轮扇形,开放式转子和部分涡轮推进架构。本文概述了如何使用EDS来支持主要的研究。然后,提出了一种开发和校准发动机和飞机模型以匹配现有开源数据的方法。最后,显示了可用的高级发动机和飞机架构的摘要。结果表明,EDS可以创建与现有系统性能紧密相匹配的模型,以及它具有支持未来飞机设计和技术开发研究的功能。
(a) 规则 61.203(4) 和 61.203(5) 要求 CPL 申请人具有局长认可的飞行时间经验。达到本咨询通告附录 I 和 II 中详述的经验要求即可。 (b) 规则 61.203(6) 要求 CPL 申请人通过航空法、飞行导航总论、气象学、飞行原理和飞机性能 (A)、(H) 或 (G)(视情况而定)、通用飞机技术知识 (A)、(H) 或 (G)(视情况而定)、气球技术知识和空气静力学 (B)(如果适用)以及人为因素等经批准的书面考试或同等考试。达到本咨询通告附录 III 中给出的书面教学大纲即可满足这些要求。 (c) 规则 61.203(7) 要求 CPL 申请人向飞行考官证明其在相应类别的飞机上的能力。达到本咨询通告附录 IV 中给出的飞行考试大纲即可满足此要求。 (d) 公约外国缔约国颁发的有效 CPL 或更高级别的执照通常被视为满足飞行时间和除航空法之外的所有书面考试通过的要求;并且满足飞行考试的要求,前提是申请人: • 提供证据证明在颁发已提交认可的飞行机组执照后,已完成至少 250 小时的商业运营机长经验。此类经验应具有
对不断提高飞机性能的需求导致了飞行控制系统的引入,而现在这些系统已经变得非常复杂。通常应用的控制设计方法(例如增益调度、动态逆)需要精确的系统动态模型,并使用数值和实验方法进行复杂的空气动力学分析,并进行远远超出确保符合法规要求的飞行测试。随着模块化无人机的普及,需要快速、更便宜、可扩展的设计方法,从而导致自调节、自适应控制器领域的出现。自适应控制器不需要精确的工厂模型,它们可以根据配置偏差和飞行条件进行调整。这样可以增强控制系统的稳健性。自适应控制器的设计成本较低,并且可以轻松定制已经应用的控制器以适应给定飞机配置的要求。本文选择了模型识别自适应控制(MIAC,也称为间接自适应控制)框架(而不是更常用的模型参考自适应控制),因为它的适用范围更广(可以容纳任意零极点位置)并且可以分阶段引入。一旦确定模型识别的正确操作,就可以应用在线控制重新设计来完成自适应。本文的目的是研究 MIAC 对非线性多输入多输出 (MIMO) 系统的适用性,主要关注识别和参数自适应,这将导致自适应控制设计。对于