摘要:飞机控制面的传统液压伺服机构正逐渐被机电执行器 (EMA) 等新技术所取代。由于 EMA 才刚刚采用,因此无法获得有关其可靠性的现场数据,其故障模式尚未完全了解;因此,有效的预测工具可以帮助检测飞行控制系统的早期故障,以便正确安排维护干预和执行器更换。这将带来双重好处:通过避免飞机在部件受损的情况下飞行,可以提高安全性,并且可以防止更换仍能正常工作的部件,从而降低维护成本。然而,由于受监控系统的复杂性和多学科性质,EMA 预测提出了挑战。我们提出了一种基于模型的故障检测和隔离 (FDI) 方法,采用遗传算法 (GA) 在系统性能开始受到影响之前识别故障前兆。考虑了四种不同的故障模式:干摩擦、间隙、部分线圈短路和控制器增益漂移。本文提出的方法能够以比数据驱动策略更有效的方式利用系统设计知识来应对挑战,并且需要的实验数据更少。为了测试所提出的工具,开发了一个模拟测试台。实施了具有不同详细程度的 EMA 的两个数值模型:高保真模型提供了要分析的故障执行器的数据,而更简单的模型,计算量更小,但足够准确以模拟所考虑的故障模式,由 GA 迭代执行。结果显示,该系统具有良好的稳健性和精确度,能够早期识别系统故障,且误报或漏报很少。
1 CAG 1 加拿大航空大队 2ATAF 第 2 盟军战术空军 4ATAF 第 4 盟军战术空军 10 TAG 第 10 战术航空大队 AAFCE 中欧盟军空军 ACE 欧洲盟军司令部 AC&W 飞机控制和警告 AFCENT 中欧盟军 AFHQ 空军总部 AFVG 英法可变几何 AMB 航空器材基地 AH 攻击直升机 AMF(A) 欧洲盟军司令部机动部队(空中) AMF(L) 欧洲盟军司令部机动部队(陆地) AMAE 航空工程空军成员 AMAP 计划空军成员 AMAS 空军参谋空军成员 AMC 航空器材司令部 AMTS 空军技术服务成员 AOC 空军指挥官 AOP 空中观察站 ASR 空中海上救援 ATC 空中运输司令部 ATIP 信息和隐私访问 AWX 全天候战斗机 BAFO 英国占领空军 BAI 战场空中拦截BAOR 英国莱茵军团 BCATP 英国联邦航空训练计划 BOMARC 波音密歇根航空航天研究中心 CAF 加拿大空军 CAF 加拿大武装部队 CAMRA 加拿大先进多用途飞机 CAOF 加拿大陆军占领军 CAS 空军参谋长 CAS 近距离空中支援 CEF 加拿大远征军 CENTAG 中央集团军 CEPE 中央实验和验证机构 CEPS 中欧管道系统 CFB 加拿大武装部队基地 CFE 加拿大欧洲武装部队 CFHQ 加拿大武装部队总部
执行摘要 美国空军飞机事故调查 A-29,T/N 13-2015 穆迪空军基地,佐治亚州 2017 年 3 月 6 日 2017 年 3 月 6 日,当地时间 (L) 约 14 时 32 分,一架事故飞机 (MA),一架 A-29B,T/N 13-2015,隶属于佐治亚州穆迪空军基地第 14 飞行训练联第 81 战斗机中队,在一次近距离空袭 (CAA) 学生飞行中坠毁,坠落在霍默维尔机场西北约 1.5 海里 (NM) 的地面。事故教练飞行员 (MIP) 和事故学生飞行员 (MSP) 安全弹射,MIP 在弹射过程中受伤。MA 在撞击中被毁,约一英亩的私人财产受到轻微损坏。政府财产损失估计为 17,772,729 美元。事故发生在阿富汗 A-29B 训练课程的 CAA 教学大纲出击(飞行)期间。MA 是双机编队中的第二架,MSP 坐在前排座位,MIP 坐在后排座位。MA 在出击初期出现电源管理系统 (PMS) 故障,在与 Top-3 领导层协商后,任务继续进行。大约一小时后,推进系统突然出现故障,螺旋桨速度 (Np) 显著降低,螺旋桨叶片朝向顺桨位置,发动机扭矩增加超过极限。MIP 立即启动压缩机失速检查表;但是,他在建立飞机控制并评估后退出了该检查表
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行对安全至关重要且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用,尤其是反应堆保护系统 (RPS),受到全世界越来越多的关注。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用数字设备,例如 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)。但是,基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行对安全至关重要且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用,尤其是反应堆保护系统 (RPS),受到全世界越来越多的关注。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用数字设备,例如 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)。但是,基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
1 CAG 1 加拿大航空大队 2ATAF 第 2 盟军战术空军 4ATAF 第 4 盟军战术空军 10 TAG 第 10 战术航空大队 AAFCE 中欧盟军空军 ACE 欧洲盟军司令部 AC&W 飞机控制和警告 AFCENT 中欧盟军 AFHQ 空军总部 AFVG 英法可变几何 AMB 航空器材基地 AH 攻击直升机 AMF(A) 欧洲盟军司令部机动部队(空中) AMF(L) 欧洲盟军司令部机动部队(陆地) AMAE 航空工程空军成员 AMAP 计划空军成员 AMAS 空军参谋空军成员 AMC 航空器材司令部 AMTS 空军技术服务成员 AOC 空军指挥官 AOP 空中观察站 ASR 空中海上救援 ATC 空中运输司令部 ATIP 信息和隐私访问 AWX 全天候战斗机 BAFO 英国占领空军 BAI 战场空中拦截BAOR 英国莱茵军团 BCATP 英国联邦航空训练计划 BOMARC 波音密歇根航空航天研究中心 CAF 加拿大空军 CAF 加拿大武装部队 CAMRA 加拿大先进多用途飞机 CAOF 加拿大陆军占领军 CAS 空军参谋长 CAS 近距离空中支援 CEF 加拿大远征军 CENTAG 中央集团军 CEPE 中央实验和验证机构 CEPS 中欧管道系统 CFB 加拿大武装部队基地 CFE 加拿大欧洲武装部队 CFHQ 加拿大武装部队总部
系统设计 • 请勿制作可能危及设备和人员安全的 GP 触摸屏开关。GP、其 I/O 单元、电缆和其他相关设备的损坏可能会导致输出信号持续保持 ON 或 OFF 状态,并可能导致重大事故。因此,应使用限位开关等设计所有监控电路,以检测错误的设备移动。为防止与错误信号输出或操作相关的事故,应将用于控制重要机器操作的所有开关设计为通过单独的控制系统进行操作。 • 请勿将用于控制机器安全操作的开关(如紧急停止开关)制作为 GP 触摸屏图标。务必将这些开关安装为单独的硬件开关,否则可能会发生严重的人身伤害或设备损坏。 • 请勿将 GP 单元用作严重警报的警告设备,因为这些设备可能会导致严重的操作员伤害、机器损坏或生产停止。严重警报指示器及其控制/激活器单元必须使用独立硬件和/或机械联锁进行设计。 • 请设计您的系统,以使设备不会因 GP 与其主机控制器之间的通信故障而发生故障。这是为了防止任何可能的人身伤害或财产损失。 • GP 不适合与飞机控制设备、航空航天设备、中央中继数据传输(通信)设备、核电控制设备一起使用
• 将 GP 电源线端子连接到电源接线端子时,请先检查 GP 电源是否已通过断路器或类似装置完全关闭。• 除更换 GP 的背光灯外,请勿打开 GP 的外壳,因为高电压会流经 GP,触摸内部零件可能会导致触电。• 请勿使用超出 GP 指定电压范围的电源。否则可能会导致火灾或触电。• 请勿修改 GP 的设计,因为这可能会导致火灾或触电。• 请勿在存在易燃气体的环境中使用 GP,因为操作 GP 可能会引起爆炸。• GP 使用锂电池来备份其内部时钟数据。如果电池更换不当(即电池的 + 和 — 极接反),电池可能会爆炸。更换电池时,请联系您当地的 GP 经销商。• 请勿在危及生命或重大防灾场合使用 GP 触摸面板开关。对于安全相关开关(如紧急停止开关),请务必使用单独的机械开关。• 为防止操作员受伤或机器损坏,请务必设计机器操作系统,以使机器不会因 GP 与其主控制器之间的通信故障而发生故障。• GP 不适合用于飞机控制设备、航空航天设备、中央中继数据传输(通信)设备、核电控制设备或医疗生命支持设备,因为这些设备固有要求极高的安全性和可靠性。• 将 GP 与交通工具(火车、汽车和轮船)、灾害和犯罪预防设备、各种安全设备、非生命支持相关医疗设备等一起使用时。应使用冗余和/或故障安全系统设计,以确保适当的可靠性和安全性。
1. 引言 自从飞行开始以来,飞机控制一直是航空业确保安全飞行的首要任务之一。就像人体一样,飞机的每个部件都在确保安全飞行和控制方面发挥着作用。航空运输无疑是近代最安全的交通方式之一。然而,有时确实会发生造成大量人员伤亡的事故或事件。机械故障或飞机部件损坏是继飞行员失误之后导致飞机失事的第二大常见原因,约占所有航空事故的 22% [1]。其他事故原因还包括破坏、失控 (LOC)、天气和其他人为因素。在早期,飞行控制系统是机械的,这意味着飞行员在驾驶舱的控制与控制面之间存在直接联系。多年来,机械飞行控制系统已被允许飞行员直接控制飞机运动的系统所取代。这种数字类型的飞行控制系统使用电信号,被称为“电传操纵”。这种飞行控制系统提高了飞机的稳定性和控制力,也提高了飞行员对飞行干扰的反应时间 [2]。此外,在飞机遇到任何类型的系统故障的情况下,它都会变得不对称,飞行员的工作量会大大增加。浮动配平片、发动机风扇爆裂、鸟撞和控制器冻结都是可能限制飞机控制的一些故障示例。尽管如此,在大多数情况下,当发生这些类型的故障时,只有控制面受到影响,而升力面保持完好。苏城 DC-10 坠机事件就是这种情况的一个非常著名的例子。联合航空 232 航班从丹佛飞往芝加哥时,第二台发动机发生故障,导致所有液压控制装置失效。飞机随后由剩下的两台发动机控制,并在爱荷华州苏城坠毁。共有 111 人伤亡,但 185 人幸存 [3]。这清楚地表明了飞机在没有标准控制面的情况下也能被控制的能力。 2003 年,DHL 的空客 A300B4 左翼遭到地对空导弹袭击。
摘要:提出了一种使用虚拟现实头戴式显示器 (VR-HMD) 的实时飞行模拟工具,用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体来说,VR-HMD 是为在低/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反应。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器一起连接到 FGFS,这也被模拟以提供更好的态势感知,以及开发用于提供所需飞行数据的平视显示器 (HUD)。在本研究中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。发现 FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,每帧读取一次文件,相当于大约 0.0167 秒(60 Hz)。还根据 NASA TLX 问卷进行了类似的评级技术测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,使用桌面模拟器和 VR-HMD 工具对飞机控制进行了比较。结果表明,该系统的当前迭代非常适合在安全和沉浸式环境中训练飞行员使用类似系统。此外,这种先进的便携式系统甚至可以提高飞行员的态势感知能力,并允许他们在模拟中使用相同的数据传输程序完成相当一部分实际飞行测试。VR-HMD 飞行模拟器还旨在表达地面控制站 (GCS) 概念,并使用机载摄像机广播的真实环境实时传输飞行信息以及视点 (POV) 视觉效果。