当《移动设备国际权益公约》(“公约”)和《关于航空器设备特定事项的议定书》(“议定书”)1 作为国际法生效时,国际航空器物权登记处(“登记处”)3 开始运作。该登记处是历史上第一个此类登记处,是公约和议定书优先权结构的核心特征,适用于涉及飞机机身、飞机发动机和直升机(统称为“航空器物权”)的七种交易 4。5 其作用是提供一种功能高效且商业上可接受的方法来设定竞争索赔人对航空器物权的优先权。它是一个现代化的通知登记处,其许多特征都仿照了
钛在地壳中的含量约为0.63%,居所有元素的第10位,含量仅次于铝、铁、镁等金属元素,铁、镁居第10位;钛合金密度小,比强度高(抗拉强度与密度之比),工作范围宽(-253℃~600℃),耐腐蚀熔点优良;钛合金化学活性很大,易与氢、氧、氮发生反应,冶炼加工困难,加工成本高。钛合金还具有导热性差(仅为铁的1/5、铝的1/15)、变形系数小、摩擦系数大等特点,被广泛应用于飞机机身、燃气轮机、石油化工、汽车工业、医疗等领域的重要零部件。
当《移动设备国际权益公约》(“公约”)和《关于航空器设备特定事项的议定书》(“议定书”)1 作为国际法生效时,2 航空器物权国际登记处(“登记处”)3 开始运作。该登记处是历史上第一个此类登记处,是公约和议定书优先权结构的核心特征,适用于涉及飞机机身、飞机发动机和直升机(统称为“航空器物权”)的七种交易 4 。5 其作用是提供一种功能高效、商业上可接受的方法来设定竞争债权人对航空器物权的优先权。它是一种现代化的通知登记处,其许多特点都仿照了
主动振动控制应用中使用的执行器可以通过利用面板结构中的弯曲或剪切应变或直接线性驱动来产生应变。面板减振应用包括抑制直升机和螺旋桨飞机机身、飞机机翼、变压器外壳和管道中的机身振动。结构构件应用包括桁架式结构中的减振、主动悬架和机翼中的主动颤振抑制。除了这些应用之外,精密主动构件还可用于结构形状修改。虽然产生剪切的执行器在减少面板和其他低负载应用中的振动方面非常有效,但大多数负载应用都是使用主动构件型组件进行的。此外,为了使这些系统性能良好,这些执行器需要在宽频带宽内运行。
• 第 2 章:飞机制作器界面 • 第 3 章:塑造飞机机身 • 第 4 章,第 I 节:创建引擎 • 第 5 章:创建仪表板 • 第 6 章,第 V 节:设置重量和平衡 • 第 9 章:进行试飞 在第 9 章之后,您的飞机至少会接受测试,并且您可以根据需要返回到您跳过的部分。 整个手册中都有交叉引用链接,格式为粗体、深灰色,如下所示 。单击其中一个链接将带您到手册的指定位置。例如,单击对“飞机制作器界面”的引用将带您到第 2 章。另请注意,可以单击手册中的大多数图像以调出 X-Plane Wiki 上的全尺寸版本。从第 83 页开始提供了本手册中使用的术语表。我们建议用户根据需要查阅此内容。
驾驶着通用防务电动 Silverado ZH2 卡车驶上 C-130 的坡道,军士长罗恩·杰克逊小心翼翼地操纵车辆,确保连接的 Silent Falcon 陶瓷复合材料拖车与飞机机身对齐。1 他全神贯注地听从装载长的手势,突然想起上次他这样做时,不小心撞到了货舱边缘。“这次不会再这样了,”他想,不禁皱起眉头,想起了另一架飞机的装载长在“认真回顾”飞机损坏情况时使用的“选择性语言”,以及他自己的 Silent Falcon 团队成员对他的嘲讽。“飞机上只有一些油漆,拖车的‘透明涂层’(MXene 电磁干扰涂层)中确实含有钛;所以,拖车甚至没有损坏……”此外,我们之所以要跳伞,是因为多诺维亚导弹即将来袭,而且机场另一边还有叛乱分子的袭击。” 2 杰克逊小心翼翼地把卡车调平,把拖车缓缓地推入飞机,然后把车停了下来。他向装卸长挥了挥手,然后
进行了混合实验-数值研究,以建立在加压飞机机身中存在或不存在多点损伤 (MSD) 的情况下的实用裂纹扭结标准。修改了 Ramulu-Kobayashi 裂纹扭结标准,以预测沿 MSD 线的自相似裂纹扩展以及随后在撕裂带附近的扭结。进行了仪器化双轴试验样品和小型机身断裂实验,以生成裂纹扭结和裂纹速度数据,然后将其输入到断裂样品的大变形弹性动力学有限元模型中。计算出的混合模式 I 和 II 应力强度因子以及扩展裂纹之前的大轴向应力用于评估自相似裂纹扩展和裂纹轨迹上的裂纹扭结标准。预测和测量的裂纹扭结角度和位置之间具有极好的一致性。通过计算和测量的应变计数据的匹配进行了额外的验证。
典型的教练机为三轮式飞机,由一个前起落架和两个主起落架组成。为了保持空气动力学上光滑的表面,着陆舱门应盖上门。前起落架门通过三个铰链连接到飞机机身,铰链由连接到中央铰链的液压执行器驱动。NLG 门结构由两层铝皮制成,中间有加强筋,借助紧固件使其成为箱形结构。铰链由铝合金加工而成,通过钢合金螺栓固定在结构上。前起落架门设计用于抵抗不同条件下的临界气动载荷。使用 MSC/NASTRAN 对给定的边界条件和载荷进行前起落架门结构分析。对临界载荷情况进行静态强度和紧固件检查。对 NLG 门进行正常模式分析,以检查门相对于飞机结构的固有频率,以避免共振。关键词:- 前起落架门、正常模式分析和有限元分析。
航空结构力学(AM)维护飞机机身和结构部件、飞行表面和控制装置、液压和气动控制和驱动系统和机构、起落架系统、空调、增压、视觉改善、氧气和其他公用系统、出口系统(包括座椅和座舱盖弹射系统和部件);制造和修理金属和非金属材料;监督机身工作中心的运行;维护飞机金属和非金属结构,包括机身、固定和可移动飞行表面、尾梁、门、面板、甲板、尾翼和座椅(弹射座椅除外);维护飞行控制装置和相关机制;维护液压动力存储和分配系统,包括主(主要和次要)、辅助(公用)和应急系统;维护液压驱动子系统;维护起落架系统,包括车轮和轮胎、刹车和应急系统;维护气动动力、储存和分配系统;维护升降机和绞车、机翼和尾翼折叠系统;维护发射和拦阻装置系统;执行液压部件维修和测试;并对飞机进行每日、特殊、每小时、无损和条件检查。
摘要。本文回顾了美国国家航空航天实验室在飞机机身疲劳裂纹扩展预测技术开发方面所做的努力。研究重点是扩展雨流技术用于裂纹扩展分析,以及开发用于谱载荷的加速裂纹扩展计算方法。疲劳裂纹闭合是建模的关键要素,为此开发了断口技术。这些技术与二进制编码事件记录相结合,实现了金属材料中部分贯穿裂纹的裂纹扩展和闭合映射。对缺口处短裂纹的实验研究发现了裂纹闭合的滞后性质,这解释了缺口根部疲劳中众所周知的历史敏感局部平均应力效应。在模拟使用条件下获得的故障光学断口分析表明,在相当的增长率下,短裂纹不会比长裂纹表现出更多的散射。研究了缺口处小裂纹多点裂纹萌生和扩展的性质,并将研究范围扩展到广泛用于飞机机身的凸耳接头。这项研究的结果表明,可以模拟裂纹从小于 50 微米的扩展直至失效的过程,从而解释整个寿命的很大一部分。