为了满足异类的社会需求,如今需要更复杂,创新,可持续和循环的航空系统。可持续和循环航空的目的是减少与所有航空系统活动和运营相关的燃料消耗,废物和排放方面的影响(Flightath2050,2011)。因此,必须将航空研究的分支扩展到整个飞机生命周期,从设计到生产,再到系统活动结束后的处置。这肯定会扩大设计空间,必须考虑在设计阶段与飞机开发不同阶段相关的更多变量。但是,这为航空行业提供了极大的可能性,以赢得如今的全球和竞争市场(Wu&O'Grad,1999年)。在此框架中,航空中的DLR系统建筑研究所旨在开发方法,以使多个领域的并发耦合(例如设计,制造)在飞机设计的早期阶段,以实现优化整个飞机生命周期的解决方案。这一雄心勃勃的目标的第一步是在欧洲资助的H2020项目敏捷4.0(INEA&Consortium,2019年)中的穿着。通过利用多学科设计优化(MDO)和基于模型的系统工程(MBSE)技术,该项目旨在在整个生命周期中创建系统中系统中的数字表示(Ciampa&Nagel,2021年)。尤其是,挑战之一是在飞机设计的早期阶段包括航空供应链的所有主要支柱,目的是使创新的折衷研究从未进行过。
摘要本文提出的研究活动是在适用于复杂航空系统开发的并发工程的背景下进行的。主要目的是将飞机设计参数扩展到制造和供应链的参数,包括物流方面,质量管理,风险生产,资源和材料可用性。这肯定会使设计问题复杂化,这是由于扩大解决方案贸易空间的替代方案的扩大。但是,它为当今的全球市场提供了一个很好的机会来获得敏捷性,多样性和竞争优势。在此提议的新价值驱动方法的制定和实施为决策者提供了有利的好处,也是本文涉及的航空申请案例所强调的。
其目的是运载货物,而不是像名称所暗示的那样运载乘客。它们通常由货运航空公司、私人或公司或各国武装部队运营。用于货运/商业航空运输的飞机通常具有与普通客机不同的特点:机身横截面宽/高,高翼使货物区域靠近地面,多个轮子使其能够降落在未准备好的位置,高位尾翼使货物可以直接进出飞机。以下报告是通过仔细检查后选择各种所需参数和数据来重新创建货运飞机通用模型的真正尝试。在进行必要的计算并详细研究(研究论文)飞机部件的各种合格标准以满足其作为货运飞机的需求后,选择了最终的设计参数。
这项任务的主要目标是建立连接热塑性复合材料的最佳实践,以减少下一代结构部件的装配时间和成本。正在制定工艺规范和指导材料,以大规模展示连接技术。
• ASTM D256-10(2018) – 测定塑料 IZOD 摆锤冲击强度的标准试验方法 • ASTM D790-17 – 非增强和增强塑料及电绝缘材料弯曲性能的标准试验方法 • ASTM D792- 20 – 位移法测定塑料密度和比重(相对密度)的标准试验方法 • ASTM D2344/D2344M- 16 – 聚合物基复合材料及其层压板短梁强度的标准试验方法 • ASTM D3039/D3039M- 17 – 聚合物基复合材料拉伸性能的标准试验方法 • ASTM D3171- 15 – 复合材料成分含量的标准试验方法 • ASTM D3518/D3518M- 18 – 面内剪切标准试验方法通过 ±45° 层压板拉伸试验对聚合物基质复合材料的响应 • ASTM D3418-15 - 通过差示扫描量热法 (DSC) 测定聚合物转变温度和熔化焓和结晶的标准测试方法 • ASTM D5766/D5766M-11(2018) – 聚合物基质复合层压板开孔拉伸强度的标准测试方法 • ASTM D5961/D5961M-17 – 聚合物基质复合层压板轴承响应的标准测试方法 • ASTM D6641/D6641M- 16e1 – 使用组合载荷压缩 (CLC) 试验工装对聚合物基质复合材料压缩性能的标准测试方法 • ASTM D6742/D6742M-17 – 聚合物基质复合层压板填孔拉伸和压缩试验的标准实践 • ASTM E831- 19 – 通过热机械分析测定固体材料线性热膨胀的标准测试方法 • ASTM D7028-07(2015) – 通过动态机械分析 (DMA) 测定聚合物基质复合材料玻璃化转变温度 (DMA Tg) 的标准测试方法 • ASTM E831- 19 – 通过热机械分析测定固体材料线性热膨胀的标准测试方法 • FAR 25.853 (A),附录 F,第 I 部分,(a)、1、(i): 60 秒 – 燃烧长度和熄灭时间 • FAR 25.853 (D),附录 F,第 IV 部分 – 滴落时间和热释放速率 • FAR 25.853 (D),附录 F,第 V 部分 – 烟雾排放特性
航空工业一直在寻求在人力、计算时间和资源消耗方面更高效的设计优化方法。当代理模型和最终过渡到 HF 模型的切换机制都经过适当校准时,混合代理优化可以在提供快速设计评估的同时保持高质量结果。前馈神经网络 (FNN) 可以捕获高度非线性的输入-输出映射,从而产生有效的飞机性能因素替代品。然而,FNN 通常无法推广到分布外 (OOD) 样本,这阻碍了它们在关键飞机设计优化中的应用。通过基于平滑度的分布外检测方法 SmOOD,我们建议使用优化的 FNN 替代品对模型相关的 OOD 指标进行编码,以生成具有选择性但可信预测的可信代理模型。与传统的基于不确定性的方法不同,SmOOD 利用 HF 模拟固有的平滑特性,通过揭示其可疑的敏感性来有效地暴露 OOD,从而避免对 OOD 样本的不确定性估计过于自信。通过使用 SmOOD,只有高风险的 OOD 输入才会被转发到 HF 模型进行重新评估,从而以较低的间接成本获得更准确的结果。研究了三种飞机性能模型。结果表明,基于 FNN 的替代方法优于高斯过程替代方法
摘要:飞机改装是一项涉及多种场景和利益相关者的艰巨任务。制定现有平台的改装策略需要详细了解多个方面,从飞机性能和排放、开发和改装成本到预计运营成本。本文提出了一种在工业层面计算改装成本的方法,解释与此类过程相关的活动。成本主要来自三个方面:开发成本、改装成本和设备购置成本。在现有 90 PAX 区域涡扇飞机的改装中采用了不同的改装方案,例如发动机改装和机载系统电气化,突出了对飞机性能和工业成本的影响。在权衡和决策方面考虑了多种变量和情景,包括要改装的飞机数量、飞机的传统及其利用率、燃油价格和机场收费。结果表明,考虑到拥有 500 个平台的机队,通过每架飞机约 2000 万欧元(估计价格的 50%)的巨额投资,可以减少 15% 的燃料需求和排放量。此外,根据监管机构、政府或航空公司推动的情景,本文提供了一种有用的方法来评估改造活动的可行性。
AC&A 生产的第 3 批面板存在质量问题。更换面板由 Axiom Materials 制造。今年早些时候收到更换面板后,测试恢复(之前已完成第 1 批和第 2 批的测试)。
摘要:ICAO 附件 16 规定用于认证亚音速运输飞机的声学性能。每架飞机都根据在进场和离场沿线特定认证位置测量到的 EPNL 水平进行分类。通过模拟此认证过程,可以确定所有相关参数并评估有希望降低噪音认证水平的措施,以符合基本 ICAO 规定,即飞机的允许运行条件。此外,模拟是评估新技术和不存在的飞行器概念的唯一方法,这也是本文所述研究活动的主要动机。因此,ICAO 附件 16 规定被整合到 DLR 现有的噪音模拟框架中,并在概念设计阶段实现新型飞机概念的虚拟噪音认证。预测的认证水平可以直接选择为设计目标,以便为新飞机设计实现有利的 ICAO 噪音类别,即同时考虑设计和由此产生的飞行性能。可以对所考虑的每种概念飞机设计的操作限制和允许的飞行程序进行详细评估和识别。可以对影响预测噪声认证水平的相关输入参数进行敏感性研究。具有主导作用的特定噪声源
ICAP II 调查结果 ................................................................................................ 36 ICAP III 调查结果 ................................................................................................ 36 DAG 2 级别 1 ........................................................................................................ 38 DAG 2 级别 2 ........................................................................................................ 38 DAG 3 级别 1 ........................................................................................................ 40 DAG 3 级别 2 ........................................................................................................ 40 DAG 4 级别 1 和 2 ............................................................................................. 42 干扰平均工作量 ............................................................................................. 42 ECMO 工作量分析 ............................................................................................. 44 飞行员工作量分析 ............................................................................................. 46 常见任务 ............................................................................................................. 48