飞机着陆是飞行的最终阶段,飞机从 15 米的高度缓慢飞行,着陆后完全停止,然后在跑道上滑行 [4]。着陆是最困难的飞行阶段,要求飞行员具备非常高的驾驶技能 [1]。着陆是通过减速并下降到跑道来完成的。减速是通过减少推力和/或使用襟翼、起落架或减速板产生更大的阻力来实现的。飞行的起飞过程可分为两个主要阶段 - 加速和起飞。这些阶段由其他某些子阶段划分。航空工业的进步现在已经达到了所有这些阶段都可以在没有飞行员参与的情况下进行的程度,即使用自动驾驶系统。在民航中,无人系统仍被谨慎使用,主要仅在水平飞行阶段,并且仍由机组人员控制。然而,主要是经验丰富的飞行员执行着陆过程。由于着陆时所有动作的复杂性和危险性,根据统计,此阶段被认为是最危险的阶段 [2]。这项工作的目的是分析影响地面路径长度的因素,并开发一种系统,该系统可以在飞机着陆后完全自动停止飞机,或者至少帮助飞行员确定剩余的制动距离,以防止危险情况。开发的系统和方法将告知机组人员剩余的制动距离。系统计算包括跑道的剩余长度,以飞机配备的系统的输出信号为基础 [3]。系统还考虑了各种因素,例如天气条件 [7]、刹车和轮胎状况、刹车率、减速统计、特定飞机的空气动力学特性 [5, 9]、控制方法 [12] 等。本文分析了飞机的刹车距离。根据事故统计,开发一种能够控制飞机着陆后和起飞期间刹车距离的自动化装置非常重要 [2]。该装置能够随时计算必要的制动力,以合理使用飞机的刹车系统,最大限度地延长轮胎和刹车的磨损,确保乘客安全并排除飞行员失误的可能性 [6],以及用各种材料制成的元件和结构的强度 [8, 10, 11]。
飞机着陆是飞行的最终阶段,飞机从 15 米的高度慢速飞行,着陆后完全停下来,然后在跑道上滑行 [4]。着陆是飞行中最困难的阶段,要求飞行员具备非常高的驾驶技能 [1]。着陆是通过减速并下降到跑道来完成的。减速是通过使用襟翼、起落架或减速板减少推力和/或产生更大阻力来实现的。飞行的起飞过程可分为两个主要阶段 - 加速和起飞。这两个阶段又由其他某些子阶段划分。航空工业的进步现已达到所有这些阶段都可以在没有飞行员参与的情况下进行的地步,即使用自动驾驶系统。在民航中,无人系统仍被谨慎使用,主要仅在水平飞行阶段使用,并且仍由机组人员控制。不过,主要是由经验丰富的飞行员执行着陆过程。由于着陆时所有动作的复杂性和危险性,根据统计,此阶段被认为是最危险的阶段 [2]。这项工作的目的是分析影响地面路径长度的因素,并开发一种系统,该系统可以在飞机着陆后完全自动停止飞机,或者至少帮助飞行员确定剩余的制动距离,以防止危险情况。开发的系统和方法将提供信息
摘要:减少跑道入口处的出发队列长度是减少机场飞机交通拥堵和燃料消耗的最重要要求之一。本研究使用随时间变化的流体队列设计了跑道上的飞机出发模型。所提出的模型使我们能够确定出发队列中的飞机等待时间,并评估在登机口而不是跑道入口处分配合适停留的有效控制方法。作为案例研究,本研究模拟了东京国际机场 05 号跑道一整天的出发队列。使用机场出发的实际交通数据,该模型估计飞机在 05 号跑道上一天总共花费 2.5 小时的出发等待时间。考虑到实际出发交通的随机性,使用验证标准讨论了所提出的模型的相关性。与实际交通数据中记录的出发队列相比,模型估计显示出合理的预期数量级。此外,假设起飞排队长度减少,则定量评估生态和经济效益。我们的结果表明,由于飞机在一条起飞跑道上等待起飞,每年会浪费大约一千吨燃油。
摘要 — 飞机的起飞重量 (TOW) 是飞机性能的一个重要方面,会影响从飞行轨迹到燃油消耗的大量特性。由于其依赖于乘客和货物载重因素以及运营策略等因素,特定航班的 TOW 通常不提供给运营航空公司以外的实体。上述观察结果促使开发准确的 TOW 估计值,可用于燃油消耗估计或轨迹预测。本文提出了一种基于高斯过程回归 (GPR) 的统计方法,使用从起飞地面滑行观测到的数据来确定 TOW 的平均估计值和相关的置信区间。选择预测变量时要同时考虑它们的易用性和底层飞机动力学。模型开发和验证是使用飞行数据记录器档案进行的,该档案还提供地面真实数据。发现所提出的模型的平均 TOW 误差为 3%,平均适用于八种不同类型的飞机,比飞机噪声和性能 (ANP) 数据库中的模型误差小近 50%。与仅提供 TOW 点估计的 ANP 数据库相比,GPR 模型通过提供概率分布来量化估计中的不确定性。最后,开发的模型用于估计飞机上升过程中的燃油流量。GPR 模型估计的 TOW 用作燃油流量估计的输入。与确定性 ANP 模型或不使用 TOW 作为明确输入的模型相比,所提出的 TOW 统计模型能够更好地量化燃油流量的不确定性。索引术语 — 统计建模;起飞重量 (TOW);燃油流量;飞行数据记录器 (FDR);起飞地面滑行
执行摘要 当今的空中交通系统安全地支持着全国各地机场的大量运营,使航空旅行成为美国各地人们商业和休闲活动的常规内容。在大都市地区(称为大都会区),多个机场经常直接竞争航班时刻表和航班频率的客运收入。然而,由于空中交通系统受到需求的压力,航空公司无法满足航空旅客对航班时刻表的期望。由于大都会区的运营能力对整个空中交通系统的容量和延误产生重大影响,因此减少与大都会区运营相关的容量限制和延误被视为提高整个空中交通系统容量的关键组成部分。
飞机噪音对机场周边人员和财产的影响不容小觑。飞机噪音是一种主要的刺激物,可引起各种健康问题、心理、功能和生理紊乱 [1, 2]。这些健康问题(包括烦恼)已被研究过 [3, 4]。白天暴露于 60 dBA 以上的噪音和夜间暴露于 45 dBA 以上的噪音时,恐惧、抑郁、沮丧 [5, 6] 和血压升高等心理健康问题会更加常见 [7, 8]。当儿童暴露于 50 dBA 以上的噪音水平时,学习困难也是一个常见现象 [9]。尽管航空运输具有巨大的经济和社会效益,但其负面外部效应(包括空气污染物、流动性差距和事故)也不容小觑。飞机噪音是与民航有关的最重要的环境问题之一 [10],与飞机推进系统以及大气条件 [11] 密切相关。尼日利亚拉各斯的穆尔塔拉·穆罕默德国际机场 (MMIA) 是机场与周边住宅区和城市中心商务区完全融合的典型例子。我们的目标是提供一个模型,可以预测机场的噪音水平,并可能预测远离任何新机场位置的安全区。