飞行路径高度6000-12000m,宽度25km。地球站高增益天线对空覆盖。每个地球站覆盖高度>10km,宽度≥25km,半径≥200km。两个地球站交叉区域为切换区域。基站覆盖半径200km,飞机速度1000km/h,切换间隔约10分钟。当飞机从A地球站覆盖区域飞向B地球站覆盖区域时,发出切换请求,管理系统将A地球站的业务链路切换到B地球站。与B地球站建立链路后,飞机与A地球站断开连接,机舱固定频率转发。用户无法感知切换过程。
相机的主要部件是两个可互换胶卷盒、相机机身和接线盒以及相机控制面板。相机设计为提供 120° 的摄影扫描角度。12 英寸、f/3.8 高敏锐度镜头可在 25.2 英寸长、4.5 英寸宽的 5 英寸穿孔胶卷上拍摄照片。胶卷盒的胶卷容量为 2,000 英尺,可曝光约 900 帧。相机以自动循环模式运行,这意味着相机以循环速率连续运行,以允许拍摄地面带照片,确保完全覆盖地面并具有适当的重叠。这是通过速度伺服系统实现的,该系统根据飞机速度和高度以称为 V/H 的关系循环摄像机。此 V/H 命令可以自动执行
飞机的主要动力是燃气涡轮发动机。这些发动机有多种形式,其中四种被认为是目前使用的主要发动机。这些发动机是涡轮喷气发动机、加力涡轮喷气发动机、涡轮风扇发动机和涡轮螺旋桨发动机。燃气涡轮机是从燃烧气体流中提取能量的旋转发动机。它们有一个上游压缩机,与下游涡轮机相连,中间有一个燃烧室。在飞机发动机中,这三个核心部件通常被称为“燃气发生器”。当涡轮喷气发动机推动的飞机速度接近废气速度时,涡轮喷气发动机效率最高。在许多情况下,飞机的设计速度比典型的喷气排气速度慢得多,因此发动机涡轮也用于驱动其他部件。这样,涡轮螺旋桨发动机、涡轮风扇发动机和涡轮轴发动机就针对它们驱动的飞机的速度和类型进行了优化。4. 很少有主要的飞机发动机制造商在市场上占据主导地位
摘要:基于非线性动态逆(NDI)设计了纵向自动着舰系统(ACLS)控制律,以实现抑制尾流、解耦横向状态和跟踪动态期望着陆点(DTP)的目的。首先,建立F/A−18飞机六面进近非线性着舰模型,获取气动、操纵面、极限状态等参数。其次,采用俯仰角控制跟踪期望纵向轨迹的策略。基于自适应NDI设计了自动功率补偿系统(APCS)、俯仰角速率、俯仰角和垂直位置控制环路,并详细推导了稳定性分析和原理描述。采用频率响应法设计了甲板运动补偿(DMC)算法。第三,通过遗传算法对控制参数进行优化。提出了一种综合考虑飞机速度、迎角(AOA)、俯仰速率、俯仰角和垂直位置的适应度函数。最后,在半实物仿真平台上进行了综合仿真。结果表明,所采用的自动着陆控制律既能达到良好的性能,又能抑制气流尾流和横侧耦合。
描述:RRDAS-L 的主要任务是支持空降全球反应部队 (GRF)、空降旅战斗队 (BCT) 的空投需求以及非空降 BCT、斯特赖克旅战斗队 (SBCT)、特种作战部队 (SOF) 和其他未来部队的补给,以执行战略、战役和战术军事行动。RRDAS-L 将用于非许可威胁环境中,这种环境中需要改变高度或提高飞机速度以减少飞机暴露时间,将作战装备和其他物资空投到 DZ。动态不对称威胁和作战环境要求一支全方位、战略响应迅速、敏捷且占主导地位的陆军部队,在需要时可以通过空投插入并维持总重量。RRDAS-L 物资解决方案将在空投行动中为重达 22,000 磅的滚动车辆提供滚装和滚卸能力。目标是将索具安装时间减少至少百分之二十五,将拆除索具的时间减少百分之四十,并将对能量耗散材料(蜂窝)的依赖减少百分之八十。
对于使用模型检查技术进行的系统验证,基于二元决策图 (BDD) 的符号表示通常有助于解决众所周知的状态空间爆炸问题。基于符号 BDD 的表示也被证明可以成功分析出现的系统族,例如,通过可配置参数或遵循面向特征的建模方法。此类系统族的状态空间面临参数或特征数量的额外指数爆炸。众所周知,有序 BDD 中变量的顺序对于模型表示的大小至关重要。特别是对于从现实世界系统自动生成的模型,由于变量顺序错误,族模型甚至可能无法构建。在本文中,我们描述了一种称为迭代变量重新排序的技术,它可以构建大规模的族模型。我们通过一个具有冗余机制的飞机速度控制系统来证明我们的方法的可行性,该系统以概率模型检查器 P RISM 的输入语言建模。我们表明,标准重新排序和动态重新排序技术分别由于内存和时间限制而无法构建系列模型,而新的迭代方法则成功生成了符号系列模型。
然而,大约 20 秒后,湍流从中度增加到严重。在“导航模式”下以 0.78 马赫 (M0.78) 的速度选择开启的自动驾驶仪 (AP) 断开连接,飞机迅速爬升至指定高度以上。随后,强烈的冰雹开始影响飞机。两名机组人员都注意到,自动驾驶仪断开连接时主警告灯亮起,但由于冰雹的噪音,两名飞行员都没有听到相关的音频警告。FO 手动驾驶飞机,选择发动机点火开启,将速度设置为 M.076 以应对湍流,并打开驾驶舱顶灯。机长将导航显示器 (ND) 上的距离选择器改为 40 海里,以检查交通防撞系统 (TCAS) 上的冲突交通,监控主飞行显示器 (PFD) 上的飞机速度,监控副驾驶的侧杆输入并取消主警告灯。在整个过程中,PF 试图重新获得 FL340 并保持航迹。然而,飞机偏离了其指定巡航高度 1,300 英尺以上至 300 英尺以下,滚转至不超过 18° 的倾斜角。垂直速度指示器 (VSI) 上的指示证实,至少有一次爬升或下降率超过每分钟 5,900 英尺。
然而,大约 20 秒后,湍流从中度增加到严重。在“导航模式”下以 0.78 马赫 (M0.78) 的速度选择开启的自动驾驶仪 (AP) 断开连接,飞机迅速爬升至指定高度以上。随后,强烈的冰雹开始影响飞机。两名机组人员都注意到,自动驾驶仪断开连接时主警告灯亮起,但由于冰雹的噪音,两名飞行员都没有听到相关的音频警告。FO 手动驾驶飞机,选择发动机点火开启,将速度设置为 M.076 以应对湍流,并打开驾驶舱顶灯。机长将导航显示器 (ND) 上的距离选择器改为 40 海里,以检查交通防撞系统 (TCAS) 上的冲突交通,监控主飞行显示器 (PFD) 上的飞机速度,监控副驾驶的侧杆输入并取消主警告灯。在整个过程中,PF 试图重新获得 FL340 并保持航迹。然而,飞机偏离了其指定巡航高度 1,300 英尺以上至 300 英尺以下,滚转至不超过 18° 的倾斜角。垂直速度指示器 (VSI) 上的指示证实,至少有一次爬升或下降率超过每分钟 5,900 英尺。
摘要 — 本文报告了从快速机载平台到地面站的高速率自由空间光通信下行链路的演示。所用的飞行平台是 Panavia Tornado,激光通信终端安装在附加的航空电子演示吊舱中。配备自由空间接收器前端的可移动光学地面站用作接收站。选择的通信下行链路波长和信标激光的上行链路波长与 C 波段 DWDM 网格兼容。开发了新的光机跟踪系统,并将其应用于两侧,以实现链路捕获和稳定。飞行测试于 2013 年 11 月底在德国曼奇的空中客车防务与航天公司附近进行。该活动成功展示了数据速率为 1.25 Gbit/s 的飞机下行链路激光通信的成熟度和准备就绪性。我们根据链路预算评估、开发的光机终端技术和飞行活动的结果概述了实验设计。试验本身侧重于机载终端和地面站的跟踪性能。可在飞机速度高达 0.7 马赫时测量性能,并传输来自机载摄像机的视频数据。在瞬时跟踪误差分别低于 60 μ rad 和 40 μ rad 时,机载终端和地面站的跟踪精度高达 20 μ rad rms。
尽管朝鲜战争的大规模战斗得以结束,世界和平仍不稳定。美国和苏联这两个超级大国持有不同的意识形态,导致冷战期间双方反复对抗。对手扩大了核武库,但全球热核战争的威胁迫使对手通过代理人进行争夺霸权的斗争。远东局势的恶化和中东的一系列危机使向麻烦地区部署海军的传统做法具有了新的重要性。国际演习导致了威胁世界和平的事件和要求,海军在关键地区代表国家。在不同场合,这些部队疏散难民、巡逻动乱水域、为受威胁国家提供支持,并作为侵略者和被压迫者之间的堡垒,展现了自由的物质象征。技术和科学进步也标志着这一时期,海军航空经历了巨大的变化。这些进步的有效利用增强了海军海空军的火力、多功能性和机动性。制导导弹开始取代舰炮,舰队提高了发射核武器的能力,飞机速度从亚音速跃升至超音速,核动力对飞机的适应性正在研究中,对太空的了解不断增加影响了海军作战。空对空导弹成为拦截器的标准装备,舰船也配备了防空导弹。规划人员打算让战斗机在远距离和高空拦截苏联轰炸机,并错误地从麦克唐纳飞机公司 F4H-1 幻影 II 的初始设计中删除了机枪,海军未能纠正这一错误。空军在随后的越南战争中积累了丰富的经验