1.1 概述。陆军飞机部件的作战要求最终源自指定性能标准的 eser。这些性能标准中经常包括部件在特定诱导和自然环境下按照其设计规格运行的能力。为了获得最佳结果,战斗/物资开发人员应生成生命周期环境概况 (LCEP),以定义部件在其使用寿命期间将暴露的最极端环境压力源或环境压力源组合。LCEP 支持用户指定的性能标准,从而影响部件开发过程的设计和测试阶段。MIL·STD-810,任务 402(生命周期环境概况 (LCEP))详细解释了此过程。在完成部件 LCEP 的工程设计阶段后,将对部件进行特定的环境测试,以验证设计是否满足 AR-70-62 中定义的预期性能和适航性/资格要求。本 ADS 的主要目标是定义环境要求。在鉴定方法中,首选的是测试,但其他方法如相似性或分析也被接受。
通过使用区块链技术,航空业可以实现这一目标。实体飞机维护日志很容易丢失或被毁坏。不存在的飞机维护日志会损害人们对飞机完整性和声誉的信心。此外,欺诈行为还可能通过伪造 FAA 人员签名和安装非官方飞机部件发生。这项工作的范围是开发一个安全的区块链,可以将飞机服务记录和信息存储在数字分布式账本中。通过将维护日志保存在数字账本上,记录可以无限期地存储在受信任的环境中,同时保证记录的完整性。此外,为了实现分布式账本,使用共识算法 PoET 向所有用户准确显示全局状态。SAMR 区块链使用 Linux 基金会开源软件“Hyperledger”来促进模拟现实世界实施的环境。SAMR 使用 Python 编程语言通过创建基于权限的区块链来保存维护记录,从而实现区块链逻辑。
飞机维护是对飞机或飞机部件进行维护、修理、检查和/或改装,以确保飞机的适航性。不建议在暴露、无保护的环境中进行维护,因为维护可能会导致接受维护的物品受到污染,并使人员面临更高的受伤风险。这种寒冷的天气环境带来了独特的挑战,指挥官和工作人员必须提前预料并做好计划。虽然正常的寒冷会让人感到不舒服,但高海拔加上寒冷会非常危险,工作起来也很困难。维护人员和飞行员都知道,最好的解决方案是在有暖气的机库中进行维护,但这并不总是可行的。维护负责人应每天监测环境对飞机和设备的影响,以确定和应用最有效的方法来维护随时可执行任务的飞机。在准备进行航空维护时,主管至少应考虑以下列出的因素。负责人负责预防寒冷天气伤害。
由于复杂性、工艺能力和对技术工人健康状况的影响,专用飞机部件的夹具设计如今非常具有挑战性。建议的用于钻外蒙皮飞机门的夹具设计将适应夹具设计原则和技术工人的人体工程学方面。建议的设计将包括舒适的钻孔姿势和结构有限元分析 (FEA)。讨论了钻孔过程所需的步骤,从加载、定位、夹紧、框架旋转到钻孔。FEA 分析表明,在框架和垂直支架之间的凸缘处记录的 von Mises 应力最大值为 6.373 × 105 N/m 2,并且外蒙皮飞机门的负载重量导致应力分布可接受。开发了一个功能齐全的原型,其比例缩小到四分之一以验证设计。开发的原型成功展示了夹具设计在钻飞机门外蒙皮时提供人体工程学考虑机制的能力。
F-35 为期多年的初始作战测试与评估 (IOT&E) 计划即将结束。迄今为止,测试团队已经完成:寒冷天气试验;实际武器使用,包括炸弹和导弹;飞机部件和自主物流信息系统 (ALIS) 的网络安全测试;部署到舰船和恶劣环境;以及将 F-35 与第四代战斗机在对抗我们对手目前使用的传统和更现代威胁方面的表现进行比较的测试。露天测试任务评估了进攻性和防御性反空战的作用,包括:巡航导弹防御;压制/摧毁敌方防空系统 (S/DEAD);进攻性反空战;侦察;电子攻击;近距离空中支援;前方空中管制-机载;打击控制和武装侦察;战斗搜索和救援;反水面战;以及在高威胁环境中,在两架、四架和八架飞机的任务中进行空对地攻击。在 S/DEAD 试验期间,F-35 面临着由雷达信号模拟器 (RSE) 代表的强大、逼真的地对空威胁。
职位描述:向保障总监汇报的保障技术 PM 将负责:• 美国陆军自主配置管理和航空记录 (ACMAR) 计划的详细规划和执行,包括人员配备、技术开发、财务绩效、分包商(行业/学术界)管理和客户关系管理。• 先进技术开发计划的项目管理,该计划结合了硬件和软件元素,旨在支持美国陆军未来平台并与传统飞机兼容。• 硬件技术包括开发、改造和集成尖端传感器技术,以自主记录、跟踪和报告选定飞机部件的信息,从而提高战备状态并降低生命周期成本。• 利用当前的机载传感器、航空电子设备、发动机控制单元 (ECU)、健康和使用情况监测系统 (HUMS) 和其他先进的机载飞机系统,捕获可用的飞机数据进行处理和分析。• 软件技术包括开发代表性客户数据管理环境、开发组件剩余使用寿命 (RUL) 计算、操作员和维护人员用户界面应用程序,以及作为维持生态系统的一部分与其他 AVX 开发的程序集成。
过去几十年来,世界各地对民用和军用飞机及直升机的航空发动机和结构部件的故障分析进行了持续全面的研究。虽然取得了很大进展,但随着新设计、材料和服务以及运营需求的引入,经常会遇到无法预见的问题。资源紧缩、预算限制、高维护和更换成本以及环境限制对管理航空工业提出了新的控制和方法。本文的目的是回顾过去几十年在分析和控制飞机老化和故障问题方面取得的进展。工作包括:1)。从物理学角度分析飞机和直升机的损伤和故障模式和机制;2)。聚合物基复合材料和陶瓷故障的建模和分析解决方案。该主题的研究领域非常广泛,可能从金属合金延伸到新材料(聚合物/陶瓷复合材料、铝化物),从传统到先进的结构设计,加工技术的进步等等。本文重点介绍了基于结构完整性概念的历史故障和经验教训、故障模式和机制、各种飞机部件的故障、结构复合材料的故障机制以及案例研究。
Chang-Geun Oh,博士。肯特州立大学,肯特,俄亥俄州 44242 航空航天是可以应用大数据系统的典型领域,因为它们规模庞大。本文确定了可以利用大数据基础设施来提高运营绩效的航空航天领域,并减轻了与使用大数据相关的人为因素考虑。 NextGen 的网络中心基础设施定义了在系统范围的信息管理程序下共享大量航空、飞行和天气数据。安装在飞机部件上的传感器提取了大量的飞机健康和运行状态数据。所有在不同航空部门工作的专业人员都需要这种共享的态势感知信息来达到他们自己独特的目的,而大数据系统将使这些信息得到有效利用。大数据分析改进的预测模型将提高航空安全性,减少航班延误,并节省维护时间和成本。飞行员行为研究可以采用自然主义研究方法来补充模拟测试的局限性。自然主义飞行研究需要考虑通过大数据系统收集和分析数据。随着航空/航天领域广泛应用大数据系统,人为因素研究问题自然而然地出现了。
利勃海尔宇航图卢兹在其位于图卢兹附近坎普萨斯的工厂增加了一座新建筑。该工厂专门生产用于空气管理系统的精密机械部件。3,300 平方米的工厂扩建投资了 650 万欧元,将使公司能够引进新的生产方式,以满足客户基于不断增加的飞机交付节奏的需求。该工厂专门生产精密飞机部件,如涡轮机和压缩机的转子以及高温阀体。这些用于机载空调系统或发动机引气系统,它们是利勃海尔宇航图卢兹向世界各地的飞机制造商供应的产品系列的一部分。坎普萨斯工厂拥有 170 名员工,从现在起将拥有最先进的生产机器 - 包括 3D 打印机器。最近在生产设备上的投资达到 300 万欧元。得益于这些投资,该公司将在 2017 年将生产时间增加 10%。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
