摘要 — 本项目旨在开发一种小型飞艇,由人类远程控制。飞艇是无人驾驶飞艇 (UAV) 之一,可用于广告、VIP 安全检查、交通监控和管理等。本项目的主要目的是设计和开发一种用于室内监控和监测应用的自主无人机飞艇。图像将从安装在吊舱底部的无线摄像头捕获。确定物体的质心点需要使用三相边缘检测器、精明算子和阈值。该对象将以 2D 坐标显示在图形用户界面 (GUI) 上。在这个项目中,系统一次只能检测一个物体。关键词 — 精明算子、图形用户界面 (GUI)、物体检测、边缘检测器
通过参与该项目,这家拥有百年历史的比利时公司积极参与航空业的生态转型,并将其知识充分用于航空业的脱碳。Sabca 正在重新部署通过太空计划获得的特定知识,而 Sabca 提供的技术是这家比利时公司在航天发射器领域积累的长期经验的结果,该公司通过开展的研究和创新计划将这些经验转移到其他领域。这份合同的授予进一步证明了政府在太空和国防领域投资的战略重要性,使比利时制造商能够将自己定位为应对全球航空航天业面临的可持续发展挑战的领先参与者。
摘要:提出了一种使用虚拟现实头戴式显示器 (VR-HMD) 的实时飞行模拟工具,用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体来说,VR-HMD 是为在低/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反应。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器一起连接到 FGFS,这也被模拟以提供更好的态势感知,以及开发用于提供所需飞行数据的平视显示器 (HUD)。在本研究中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。发现 FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,每帧读取一次文件,相当于大约 0.0167 秒(60 Hz)。还根据 NASA TLX 问卷进行了类似的评级技术测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,使用桌面模拟器和 VR-HMD 工具对飞机控制进行了比较。结果表明,该系统的当前迭代非常适合在安全和沉浸式环境中训练飞行员使用类似系统。此外,这种先进的便携式系统甚至可以提高飞行员的态势感知能力,并允许他们在模拟中使用相同的数据传输程序完成相当一部分实际飞行测试。VR-HMD 飞行模拟器还旨在表达地面控制站 (GCS) 概念,并使用机载摄像机广播的真实环境实时传输飞行信息以及视点 (POV) 视觉效果。
在roboloon上,我们正在开发自主飞艇无人机,以自动检查广泛的基础设施,例如电力线,管道和铁路轨道。我们的飞艇几乎与空气一样轻巧,因为它们的氦气填充物,使它们可以在固有安全性的人身上进行操作。太阳能电池可实现整天的飞行时间,而我们的专利推进系统将直升机的可操作性与飞机的能源效率相结合。可在无人机盒网络的按钮触摸下部署,我们的飞艇将来能够在将来进行全自动检查过程。
新墨西哥州立大学 - 先进高空气体 (AHAB) Peter Lobner,2022 年 3 月 10 日更新 21 世纪初,新墨西哥州立大学物理科学实验室正在开发先进高空气体 (AHAB),这是一种太阳能驱动、非刚性、氦超压、空气动力学飞艇,旨在展示可变浮力推进。这种推进方式首次在 1863 年得到展示,当时所罗门·安德鲁斯博士首次驾驶充满氢气的 Aereon 飞艇飞越新泽西州珀斯安博伊。20 世纪 60 年代初,Aereon 公司(与安德鲁斯博士无关)建造了 Aereon III 混合飞艇,该飞艇设计为仅使用可变浮力推进即可飞行。Aereon III 在 1966 年的滑行测试中严重受损,从未有机会展示其可变浮力推进能力。改变飞艇的浮力可以使其爬升或下降。与所罗门·安德鲁斯的 Aereon 一样,AHAB 的设计目的是在重复的跳跃飞行剖面中每次爬升或下降时产生向前的推进力。凭借这种适度的推进能力,AHAB 被设计用于近太空(非常高的高度)的驻留操作,而螺旋桨在这种环境中是无效的。AHAB 飞艇的整体浮力通过内部气囊进行调整。当准备好飞行时,飞艇具有正浮力,并且空气体中的氦超压会压缩气囊。当飞艇滑翔上升时,可以打开排气阀释放气囊中剩余的空气,使未压载的飞行器达到其最大高度(压力高度)。为了过渡到滑翔下降,鼓风机将环境空气泵入气囊,增加飞艇的重量,直到其产生负浮力。通过将气囊排入大气,即可终止下降。
1977 年至 1990 年,Walden 与墨西哥飞艇制造公司 SPACIAL S.A. 的创始人 Mario Sánchez-Roldan 合作,设计和开发了一系列采用透镜状刚性测地线空间框架船体的飞艇。合作成果包括小尺寸 XEM-4 刚性透镜状飞艇演示器和全尺寸 SPACIAL MLA-32-B,后者于 1989 年 6 月首次飞行,成为 50 年来第一艘现代载人刚性飞艇。此次合作还验证了 Walden 的测地线船体设计规范,该规范用于 LTAS 飞艇设计。1997 年,该公司获得了第一批投资者,公司名称更改为 LTAS / CAMBOT LLC,以反映他们开发远程控制高空平台 (HAP)(称为 CAMBOT)的计划。Robert Ellingwood 成为该公司的总裁。2003 年,该公司更名为 LTAS Holdings LLC 和 LTAS International LLC (LTASI)。LTAS Holdings 是 Michael Walden 专利的受让人,并授权使用该知识产权 (IP)。LTASI 是 IP 应用的被许可人。此外,2003 年,一群外国投资者提供资金开发和建造大型 DCB 原型飞艇,最初打算将其作为 30-XB / 技术演示器,并被简单地指定为 TD1,后来被指定为 TD2。Michael Walden 于 2005 年离开 LTAS Holdings 和 LTASI。当时,LTAS 公司计划开发基于 TD2 设计的 New Frontier DCB 飞艇系列。这些公司于
正在开发先进技术,以大幅提高 21 世纪飞艇的性能并降低其成本。借助这些下一代飞艇,我们致力于改善人道主义援助的提供并减少碳排放,同时为美国人提供经济机会和新的工作岗位。LTA 飞艇将能够补充甚至加速人道主义灾难响应和救援工作,特别是在由于基础设施有限或被毁坏而无法通过飞机和船只轻松到达的偏远地区。我们的最终目标是创造一个零排放的飞机系列,当用于运输货物和运送人员时,将大大减少全球航空业的碳足迹。”LTA 由创始人兼首席执行官艾伦·韦斯顿和谷歌联合创始人谢尔盖·布林于 2013 年创立。韦斯顿博士于 2006 年至 2013 年担任美国宇航局艾姆斯研究中心的项目总监,当时美国宇航局参与了几个大型飞艇项目。 LTA 在旧金山湾区莫菲特场 2 号机库运营,这是 LTA 位于加利福尼亚州桑尼维尔的 1,000 英亩莫菲特场基地的三个大型飞艇机库之一。湾区其他 LTA 设施更靠近加利福尼亚州山景城的 Googleplex 总部。LTA 还在内华达州加德纳维尔设有研究和制造设施。LTA 还在俄亥俄州阿克伦地区的阿克伦机场和附近的设施运营,他们一直在增加在阿克伦的研究、开发和制造员工队伍。
本文介绍了创新型遥控 ETF 飞艇 1 的技术演示器的地面测试。测试活动旨在验证 ETF 的飞行控制系统,该系统基于推力矢量技术,与飞艇结构一起代表了 ETF 设计的一项重大创新。都灵理工学院航空航天系的一个研究小组与意大利一家小型私营公司 Nautilus 合作,几年来一直致力于 ETF (Elettra Twin Flyers) 的研究。这艘飞艇是遥控飞艇,具有高机动能力和良好的操作特性,即使在恶劣的大气条件下 2 。Nautilus 新概念飞艇具有结构和适当的指挥系统,使飞行器能够在正常和强风条件下进行向前、向后和侧向飞行以及以任何航向悬停。为了实现这些功能,ETF 演示器 3 采用了非常规的架构,该架构基于双船体,带有中央平面外壳结构、螺旋桨、机载电气系统和有效载荷(图 1)。作为主要指挥系统,气动控制面被六个螺旋桨取代,这些螺旋桨由电动机驱动,可在整个飞行范围内控制和操纵飞艇。本文分析了初步测试运行的结果,并将功率需求与专为 ETF 演示器 4 开发的燃料电池系统的性能进行了比较。I 简介 低成本多用途多任务平台 Elettra-Twin-Flyers (ETF) 正在由 Nautilus S.p.A 和都灵理工大学 [1] 合作开发。这是一种非常创新的遥控飞艇,配备了高精度传感器和电信设备。由于其独特的特点,它特别适合内陆、边境和海上监视任务以及电信覆盖范围扩展,特别是在那些无法进入或没有传统机场设施且环境影响是主要关注点的地区。ETF 的特点是机动性强,风敏感度低 [2]。飞行条件包括前向、后向、侧向飞行和悬停,无论是在正常风况下还是在强风条件下。为了实现这些能力,ETF 采用了高度非传统的架构。设计的关键点是创新的指挥系统,它完全基于由电动机驱动的推力矢量螺旋桨,由氢燃料电池供电。ETF 概念来自监视和监控目的。该飞艇设计具有很强的机动性,可以满足高水平的任务要求,可以操作高度专业化的仪器,例如轻型合成孔径雷达 (SAR) 系统或电光 (EO) 红外摄像机或高光谱传感器。为了满足平均监视要求,该系统的最低续航时间为 48 小时,可延长至 72 小时,高度操作范围为 500 至 1500 米。