在飞行过程中,飞行员必须严格监控他们的飞行仪表,因为这是更新他们情况意识的关键活动之一。监控对认知要求很高,但对于在参数出现偏差时及时干预是必要的。许多研究表明,很大一部分商业航空事故与机组人员对驾驶舱的监控不力有关。眼动追踪研究已经开发出许多指标来检查艺术观赏、体育、国际象棋、阅读、航空和太空等领域的视觉策略。在本文中,我们建议使用基本和高级眼部指标来研究新手和飞行员的视觉信息获取、凝视分散和凝视模式。该实验涉及一组 16 名经过认证的专业飞行员和一组 16 名新手,他们在飞行模拟器中执行手动着陆任务场景。两组以不同难度着陆三次(通过双任务范式进行操控)。与新手相比,专业飞行员的感知效率更高(停留次数更多且更短)、注意力分布更佳、视觉注意力处于环境模式、视觉扫描模式更复杂更精细。我们通过基于余弦 KNN(K 近邻)的机器学习使用转换矩阵对飞行员的资料(新手 - 专家)进行分类。几个眼部指标也对着陆难度敏感。我们的研究结果可以帮助评估机组人员的监控绩效、改进初始和复训并最终减少因人为错误导致的事故和意外,从而使航空领域受益。
包括 EMS(发动机监控系统)的典型设置 Stratomaster Ultra Horizon XL 是一种数字多功能仪器,专为超轻型、超轻型、实验性和自制飞机以及任何允许在一般或特殊操作许可下使用此类仪器的飞机而设计。Ultra 采用半透反射式 5.7 英寸单色显示面板设计,配有白色 LED 背光。与当前技术的彩色显示器不同,单色面板适合在阳光直射下操作,使其成为许多小型飞机应用的唯一可行选择。面板无需遮光,即使在非常明亮的光线条件下也能产生清晰可读的图像,光线直接照射在面板上。Ultra Horizon XL 取代了以下先前的产品版本:1) Stratomaster Ultra L 2) Stratomaster Ultra X 3) Stratomaster Ultra HL 和 HX 4) Stratomaster Ultra RL(旋翼机)。Ultra Horizon XL 是一个完全可由用户配置的面板,可用作主要飞行仪表显示器、发动机监视器或两者兼用。Ultra 提供两个显示页面,每个页面都可以由用户配置,从 50 多个仪器和显示项目中进行选择。屏幕上的每个项目都可以放置在用户想要的位置,大多数仪器提供几种不同的显示选项。例如,您可以在模拟高度计和基于磁带的高度计之间进行选择。
00 °C 摄氏度 00° 00' 00” 度、分、秒 000° M 磁航向 AAIB 航空事故调查处 aal 机场以上 ACC 区域管制中心 ACMP 交流电动泵 ADF 自动测向仪 ADI 姿态指引仪 AEC 机尾设备中心 agl 地面以上 AIP 航空资料出版物 amsl 平均海平面以上 AOC 航空运营人证书 APP 进近 APU 辅助动力装置 ARO 飞机报告处 ATC 空中交通管制 ATIS 自动航站楼信息服务 ATPL 航空运输飞行员执照 BKN 破损 C 摄氏度 CAP 民航出版物 CB 积雨云或断路器 CG 重心 cm 厘米 CRM 驾驶舱资源管理 CVR 驾驶舱语音记录器 DFDR 数字飞行数据记录器 DME 测距设备 EASA 欧洲航空安全局 EDP 发动机驱动泵 EFI 电子飞行仪表 EICAS 发动机指示和机组警报系统 EPR 发动机压力比 ETA 预计到达时间 FAA 联邦航空管理局 FAR 联邦航空条例 FDR 飞行数据记录器 FEC 前方设备中心 FIR 飞行信息区 FMC 飞行管理计算机 FMU 燃油计量单位 FO 副驾驶 FOM 飞行操作手册 fpm 英尺/分钟 ft 英尺 g 重力加速度 GCU 发电机控制单元 GPWS 近地警告系统 GRN 赫罗纳机场 Hpa 百帕斯卡 小时 小时 分钟 HSI 水平情况指示器 IAP 起始进近点 ICAO 国际民用航空局
按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
2.确定 CS-FCD、CS-MMEL 和 CS-CCD 适用运行适用性要求的参考日期为 2011 年 12 月 31 日。3.原产国适航当局型号合格证数据表编号TCCA 型号合格证数据表编号A-236(初次修订 2015 年 12 月 17 日,或后续修订) 4.原产国适航当局认证依据 参考 TCCA 型号合格证数据表编号A-236。5.EASA 适航要求 EASA 认证规范 25,修订版 12。EASA 认证规范全天候运行 (CS-AWO),初始版本。5.1 特殊条件 B-01 结冰条件下的飞行 B-02 失速和预定运行速度 B-03 运动和驾驶舱控制的影响 B-04 静态方向、横向和纵向稳定性以及低能耗意识 B-05 B-14 飞行包线保护设计大角度进近 B-17 正常载荷系数限制系统 B-26 在符合条件的湿槽或 PFC 跑道上缩短着陆距离 C-02 复合材料油箱 – 未容纳的发动机碎片 C-06 设计俯冲速度 C-07 设计机动载荷 C-08 飞行员限制力和扭矩(侧杆) C-12 CFRP 油箱的轮胎碎片与燃油泄漏 C-13 自动刹车系统载荷 D-04 坠机后火灾 – 复合材料结构 D-07 座椅安装的热量释放和烟雾排放 D-08 飞行中火灾 – 复合材料和特殊结构 D-14 无牵引杆牵引 D-16 控制面位置感知和 EFCS E-01 水/冰燃料系统 E-11 CFPR 机翼油箱的耐火能力 F-01 HIRF 保护 F-10 单一欧洲天空的数据链服务 F-11 飞行记录器、数据链记录 F-14 飞行仪表外部探头 - 结冰条件下的鉴定 F-21 机载系统和网络安全 F-29 锂电池安装 F-32 不可充电锂电池安装
在大多数有航空公司飞行运营部门代表在场的飞行员面试中,你可能会被问到一些技术问题。可能被问到的技术问题范围很广,显然,谁能被录用,谁不能被录用,很大程度上取决于你对这些问题的回答能力。你在这方面的考察程度差别很大。一些航空公司和运营商只会问一两个最常见的问题,而其他一些航空公司和运营商则会用难度逐渐增加、涉及多个领域的问题彻底拷问应聘者。不过幸运的是,如果你能回答面试官足够比例的问题,面试官通常都会很高兴。本书的研究包括来自以下航空公司的访谈反馈:联合航空、达美航空、美国航空、国泰航空、港龙航空、新加坡航空、大韩航空、泰国航空、新西兰航空、澳洲航空、安捷航空、英国航空、维珍航空、荷兰皇家航空、不列颠尼亚航空、西南航空、阿拉斯加航空、北欧航空、维珍快运、汉莎航空和英国米德兰航空,以及北美、欧洲、英国、东南亚和澳大利亚的众多地区涡轮螺旋桨航空运营商。因此,本书提供了从全球基本轻型飞机到重型喷气式飞机运营商所提问题的答案,本质上是一本参考书,以便读者可以快速有效地找到特定问题的答案。读者需要确定适合自己访谈的问题。这应该是不言而喻的;例如,如果您正在参加有关 B737E 的访谈,您可能会被问到有关燃气涡轮和喷气发动机以及电子飞行仪表系统(EFIS)的问题。同样,如果您参加的是轻型飞机面试,您可能会被问到有关活塞/螺旋桨发动机和机械飞行仪表的问题。通过确定适合您情况的章节、子章节或单个问题,您将大大减少复习材料。本书的参考格式非常适合确定个人预期的提问领域。不过,需要注意的是,一些涡轮螺旋桨飞机操作员可能会问喷气式飞机的问题。
2002 年 4 月 12 日,星期五 阿尔弗雷德·迪金森先生 主管调查员 (IIC) CMR 5054 重大调查部 国家运输安全委员会 AS-10 5305 室 490 L’Enfant Plaza East, SW 华盛顿特区 20594-003 亲爱的迪金森先生: 根据委员会的规定,航空公司飞行员协会就 2001 年 3 月 19 日在佛罗里达州西棕榈滩附近发生的 Comair 航空公司 5054 号航班事故提交以下评论。2001 年 3 月 19 日,一架作为 Comair 5054 号航班运营的 Embraer EMB-120 飞机在从巴哈马拿骚飞往佛罗里达州奥兰多的途中启用自动驾驶仪,在从 18,000 英尺的高度下降到 17,000 英尺后遇到结冰情况。在结冰过程中,飞机开始减速,自动驾驶仪开始调整升降舵以保持高度。空速继续下降,飞机脱离了受控飞行。机组人员随后断开了自动驾驶仪。在接管飞机的手动控制后,机组人员试图通过减小迎角和增加功率来恢复控制,但发现控制轮极难向前推。此时,飞机开始经历明显的滚转偏移,因为它在 IFR 条件下下降到大约 10,000 英尺(损失 7,000 英尺)然后离开云层,这使得机组人员能够通过目视参考确定他们的姿态和恢复程序,因为在飞机失控期间,飞机的电子姿态显示指示器 (EADI) 已经熄灭。机组人员改道飞往西棕榈滩,飞机顺利降落。在飞行后检查中,机组人员发现飞机受损严重,并注意到飞机在失控下降过程中升降舵和稳定器明显发生了永久变形。这起近乎灾难性的事故的关键问题肯定是关键飞行仪表 (EADI) 在飞行的关键阶段出现故障。这不是第一次发生。还必须重申的是,Comair 3272 和 Westair 7233 事故发生已经 5 年多了,这两起事故都表明 EMB-120 在结冰条件下具有出色的飞行操纵性能。例如,Comair 3272 航班和 Westair 7233 航班均在结冰条件下发生过类似的失控事故。这几乎是 EMB-120 的另一起灾难性事故,该飞机在结冰条件下处理问题已有 20 年的历史。美国联邦航空局和制造商均未纠正这一操作不当的问题,ALPA 也不认为美国国家运输安全委员会过去的建议已得到充分实施。
2002 年 4 月 12 日,星期五 阿尔弗雷德·迪金森先生 主管调查员 (IIC) CMR 5054 重大调查部 国家运输安全委员会 AS-10 5305 室 490 L’Enfant Plaza East, SW 华盛顿特区 20594-003 亲爱的迪金森先生: 根据委员会的规定,航空公司飞行员协会就 2001 年 3 月 19 日在佛罗里达州西棕榈滩附近发生的 Comair 航空公司 5054 号航班事故提交以下评论。2001 年 3 月 19 日,一架作为 Comair 5054 号航班运营的 Embraer EMB-120 飞机在从巴哈马拿骚飞往佛罗里达州奥兰多的途中启用自动驾驶仪,在从 18,000 英尺的高度下降到 17,000 英尺后遇到结冰情况。在结冰过程中,飞机开始减速,自动驾驶仪开始调整升降舵以保持高度。空速继续下降,飞机脱离了受控飞行。机组人员随后断开了自动驾驶仪。在接管飞机的手动控制后,机组人员试图通过减小迎角和增加功率来恢复控制,但发现控制轮极难向前推。此时,飞机开始经历明显的滚转偏移,因为它在 IFR 条件下下降到大约 10,000 英尺(损失 7,000 英尺)然后离开云层,这使得机组人员能够通过目视参考确定他们的姿态和恢复程序,因为在飞机失控期间,飞机的电子姿态显示指示器 (EADI) 已经熄灭。机组人员改道飞往西棕榈滩,飞机顺利降落。在飞行后检查中,机组人员发现飞机受损严重,并注意到飞机在失控下降过程中升降舵和稳定器明显发生了永久变形。这起近乎灾难性的事故的关键问题肯定是关键飞行仪表 (EADI) 在飞行的关键阶段出现故障。这不是第一次发生。还必须重申的是,Comair 3272 和 Westair 7233 事故发生已经 5 年多了,这两起事故都表明 EMB-120 在结冰条件下具有出色的飞行操纵性能。例如,Comair 3272 航班和 Westair 7233 航班均在结冰条件下发生过类似的失控事故。这几乎是 EMB-120 的另一起灾难性事故,该飞机在结冰条件下处理问题已有 20 年的历史。美国联邦航空局和制造商均未纠正这一操作不当的问题,ALPA 也不认为美国国家运输安全委员会过去的建议已得到充分实施。