教职人员 AC Mandal,博士(印度理工学院班加罗尔分校):实验空气动力学、流动不稳定性和过渡、湍流剪切流。 AK Ghosh,博士(印度理工学院):飞行力学、神经网络、飞行测试。 A. Tewari,博士(密苏里罗拉大学):飞行力学、气动伺服弹性、空间动力学和控制。 A. Kushari,博士(佐治亚理工学院):推进、燃烧、液体雾化、流动控制。 Abhishek,博士(马里兰大学帕克分校):旋翼机气动力学、未来垂直起降/短距起降系统、飞行器设计、无人机系统、逆飞行动力学和风力涡轮机。 Ajay Vikram Singh 博士(马里兰大学帕克分校):燃烧和反应流、燃烧产生的功能性纳米颗粒、烟灰形成和氧化、火灾动力学、爆轰和爆炸。Arun Kumar P. 博士(印度理工学院坎普尔分校):亚音速和超音速喷气机、流动控制、喷气声学。Ashoke De 博士(路易斯安那州立大学):计算流体力学、湍流燃烧、燃气轮机推进。CS Upadhyay 博士(德克萨斯 A&M 大学):计算力学、损伤力学。Debopam Das 博士(印度理工学院班加罗尔分校):理论和实验流体动力学、气动声学、不稳定性与过渡、涡旋动力学。非定常空气动力学、鸟类和昆虫的飞行。
1966 年 9 月,AGARD 飞行力学小组在英国剑桥组织了稳定性和控制会议,会上发表了多篇论文,探讨失速和超失速的相关问题。在讨论这些论文时,会议强调需要进一步了解失速机翼后的下洗和尾流场,A.D.Young 教授认为,公司和研究机构中一定有大量未发表的数据和信息,收集和整理这些数据和信息将非常有价值,可用于更广泛的设计应用。这促使飞行力学小组决定安排一名顾问对北约国家的现有材料进行调查,我们很幸运能够获得 G.J.Hancock 博士的服务来承担这项任务。在早期讨论调查范围时,调查范围被扩大到既包括空气动力学方面,也包括飞行力学性质的问题,例如失速时的动态行为,最后要求汉考克博士审查飞机在高迎角下的所有行为问题。他编写的报告包括一定程度的材料分析和协调,小组认为这份报告已经非常有用,因此决定立即以此处给出的形式发布,而不必等待更完整的分析,因为小组认为这会很困难且耗时。
低温环境及其对飞机推进可靠性的影响仍然是军用和商用航空关注的重点。推进和能量学小组和飞行力学小组过去曾主办过针对寒冷天气运行问题和挑战的专家会议和研讨会。本次关于涡轮发动机低温环境运行的研讨会现在特别有意义,因为近年来发动机和部件设计技术的进步使得在发动机开发和防冰设计考虑中可以更好地适应寒冷天气变量。
低温环境及其对飞机推进可靠性的影响仍然是军用和商用航空关注的重点。推进和能量学小组和飞行力学小组过去曾主办过专家会议和研讨会,旨在解决寒冷天气运行的问题和挑战。本次关于涡轮发动机低温环境运行的研讨会现在尤为重要,因为近年来发动机和部件设计技术的进步使得在发动机开发和防冰设计考虑中可以更好地适应寒冷天气变量。
低温环境及其对飞机推进可靠性的影响仍然是军用和商用航空关注的重点。推进和能量学小组和飞行力学小组过去曾主办过专家会议和研讨会,旨在解决寒冷天气运行的问题和挑战。本次关于涡轮发动机低温环境运行的研讨会现在尤为重要,因为近年来发动机和部件设计技术的进步使得在发动机开发和防冰设计考虑中可以更好地适应寒冷天气变量。
航空航天工程理学学士学位成功地培养了未来的航空航天工程师,使他们能够在多学科团队中工作,以创新的方式设计产品和开展研究,从而对地区、国家和全球产生积极影响。该课程侧重于将工程原理应用于飞机、导弹和航天器等航空航天飞行器的设计、制造和功能。学生在接触轨道力学、空间结构和火箭推进的同时,深入了解空气动力学、工程材料和工艺、结构、推进、飞行力学和控制。
航空航天工程四年计划,FA19 目录航空航天工程是一门四年制课程,从力学、热力学、材料、固体力学、流体力学和传热等基础工程课程开始。还需要学习航空航天结构、空气动力学、飞行力学、推进、控制和航空航天设计等其他课程。该课程的毕业生通常会进入航空航天业开发飞机和航天器,但也会在其他使用类似技术的领域找到工作,例如机械和能源相关领域。例子包括汽车、海军和运动器材制造。该课程于 2002 年获得 ABET 认证。
M.Tech. 热能与推进 - 第 1 学期(L203A - 演讲厅-17)替代 - C 101 课程代码 学分 时段 课程名称 教师 AE611 3 B 流体动力学 Pradeep Kumar P AE612 3 A 航空推进 Prathap C AE613 3 F 可压缩流 Manu KV AE602 3 D 航空航天工程要素 Aravind V AE601 3 E 航空航天工程中的数学方法 Manoj T Nair AE614 3 C 高级传热 Deepu M M.Tech.空气动力学和飞行力学 - 第 1 学期(L203 - 演讲厅-16) 课程代码 学分 位置 课程名称 教师 AE602 3 D 航空航天工程要素 Aravind V (C 101) AE601 3 E 航空航天工程中的数学方法 Manoj T Nair (C 101) AE603 3 C 空气动力学 Vinoth BR AE604 3 B 大气飞行力学 Devendra Ghate AE613 3 F 可压缩流 Manu KV (C 101) AE612 3 A 航空航天推进(选修) Prathap C (C 101) M.Tech.结构与设计 - 第 1 学期 (L203B - 演讲厅 - 15) 课程代码 学分 位置 课程名称 教师 AE602 3 D 航空航天工程要素 Aravind V (C 101) AE621 3 B 高级固体力学 Anup S AE622 3 F 有限元方法 P Raveendranath AE601 3 E 航空航天工程中的数学方法 Manoj T Nair (C 101) AE832 3 A、Z 机器人技术简介 (选修) K Kurien Issac AE838 3 C 随机力学与结构可靠性 (选修) Arun CO
摘要。飞机的结构尺寸将受到阵风、机动和地面载荷的显著影响。自适应载荷减轻方法(关键词:1g-wing)有望降低最大载荷,从而减轻结构重量。为了适当分析此类载荷减轻技术,需要采用多学科方法。为了实现这一目标,应用了阵风遭遇模拟的流程链,使用高保真方法对空气动力学、结构动力学和飞行力学学科进行模拟,这些学科在时间域中耦合。在具有和不具有副翼偏转的通用运输机配置的多学科模拟中,介绍了垂直阵风对机翼和水平尾翼上的合力、力矩、载荷分布的影响。