多年来,安装在大力神商用版和部分军用版上的飞行数据记录仪都是由位于加利福尼亚州安大略的洛克希德飞机服务公司 (LAS) 制造的 LAS-l09C 或 LAS-109D 型号。这是一种模拟系统,可将飞行时间和有限数量的飞行参数记录在安装在记录器单元盒中的铝箔带上。在操作过程中,电机驱动的主轴将磁带移过几支可移动的金属头笔,这些笔会在铝箔带上划线。固定的笔标记基线,作为测量的参考线。因此,划线会在铝箔带上形成永久记录,在必须安装新的磁带盒之前,铝箔带可以存储大约 200 小时的飞行操作数据。
飞行计算机继续遭受“垃圾输入,垃圾输出”问题的困扰。当它收到错误输入并且无法识别时,飞行计算机命令的输出会调整此错误输入,从而使无人机处于更加危险的境地。举个例子:如果无人机测量的高度停留在 10,000 英尺,当无人机飞行员命令将高度更改为 9,000 英尺时,无人机不会停止下降,直到它坠毁在地面上。因此,需要及时进行人为干预,以防止发生灾难性事故。这需要地面人员主动监控飞行参数,以识别恶化的情况,并敏锐地理解自主控制逻辑并应用适当的输入以快速恢复无人机。
开发了一种简单、高效的模拟器,用于预测光伏能的产生及其在锂离子电池中的存储,该模拟器适用于四翼自主无人机,机翼上覆盖有基于薄膜砷化镓光伏电池(III-V)的太阳能电池板。该模拟器可以预测太阳能电池板产生的有效光伏功率以及无人机飞行时的电池组电压。辐照度、太阳倾斜角和无人机欧拉角等飞行参数被视为输入参数。测得的光伏功率和电池组电压与模拟值高度一致,这使得 XSun 公司可以实际使用。这项参数研究显示了气候和地理条件对无人机自主性的影响。在晴天最佳天气条件下,无人机飞行时间可持续 12 小时。
摘要 本研究开发了一种轨迹模拟方法,用于估计低空火箭的远地点前飞行参数。旨在发展火箭轨迹的数学模型,并为设计和性能分析提供视角。使用四阶龙格-库塔方法对火箭的运动方程进行积分。首先,研究火箭在飞行过程中的高度、速度、加速度和俯仰角值随时间的变化。其次,动态计算压力中心和重心,以确定飞行过程中火箭静态裕度的变化。这种方法允许模拟提供有关火箭稳定性的信息。通过将数值结果与实际飞行数据和开源软件进行比较,验证了数值结果的准确性。为此,本研究使用了两枚具有设计参数和实际飞行数据的火箭,这些火箭之前曾发射到不同的高度。本研究特别关注非制导、低空、亚音速探空火箭的轨道模拟和稳定性,并强调了建模和仿真在火箭设计和优化中的重要性。
摘要:机载合成孔径雷达(Airborne Synthetic Aperture Radar,Airborne SAR)利用机载定位定向系统(POS)获取的飞行器飞行参数以及飞行器与目标的相对位置信息,对重点目标及区域进行精确定位。飞行过程中,飞行器会因为大气湍流等原因偏离理想飞行路径,导致计算结果与实际目标位置出现偏差。为了提高目标定位精度,需要研究飞行器运动误差对目标定位误差的影响。本文从线性距离-多普勒算法(RDA)的角度探讨了单视机载SAR的定位精度,并在多视机载SAR定位模型的基础上,推导了多视机载SAR定位误差传递模型。在此基础上,详细分析了影响两种定位方法定位精度的主要因素,定量揭示了多视角机载SAR定位方法较单视角机载SAR定位方法提高目标定位精度的机理,解决了多视角机载SAR优化定位的航向规划问题。研究成果可为定位误差影响因素分析及机载SAR定位误差校正提供理论支撑。
对 2010 年 4 月 10 日波兰空军 Tu-154M PLF101 飞机在斯摩棱斯克坠毁事件展开调查。委员会工作的起点是分析有关 Tu-154M 大修的决定,然后为波兰总统莱赫·卡钦斯基率领的代表团访问卡廷、飞往斯摩棱斯克以及波兰和俄罗斯军事和民事服务活动做准备。委员会审查了从驾驶舱 (CVR) 提取和读出的对话历史以及飞行参数记录器的记录及其可靠性。它根据 MAK 和部长 J. Miller 的委托重建了飞行轨迹和地面影响。针对图-154M 飞行员,检查了复飞时的控制进场和离场路径,此前从未进行过此项工作,因为当时认为调查假设撞上桦树后的事件并不重要。同时,图-154M 飞行的最后 20 秒决定了斯摩棱斯克惨案的发生。该委员会与美国威奇托国家航空研究所 (NIAR)、华沙军事技术大学、华沙航空研究所、华沙大学跨学科建模中心和华沙红衣主教斯蒂芬·维辛斯基大学合作,重建了图-154M 飞机的结构并进行了模拟
摘要 目的——监视设备是当前空中交通管制系统中最重要的部分之一。它提供飞机位置和其他相关信息,包括飞行参数。然而,现有的监视设备在真实位置和检测位置之间存在一定的位置误差。操作员必须了解并考虑监视系统中位置误差的幅度和频率特征,因为这些误差会影响飞机运行的安全性。本研究旨在开发用于分析这些监视位置误差的仿真模型,以提高机场飞机的安全性。 设计/方法/方法——本研究调查了机场地面监视系统的机场表面检测设备中观察到的位置误差的特征,并提出了一种实用的方法来数字地再现误差的特征。 结果——所提出的方法比另一种简单方法更准确地表示位置误差。本研究还讨论了计算结果在微观仿真建模环境中的应用。 实际意义——从雷达轨迹数据分析监视误差,并配置一个随机生成器来实现这些数据。这些数据通过应用程序编程接口用于航空运输模拟,可应用于模拟中的飞机轨迹数据。随后,在实际模拟中使用额外的构建环境数据来从模拟引擎获得结果。原创性/价值——所提出的监视误差分析和模拟及其实施计划有望对航空运输安全模拟有用。
摘要背景:先前提出了助记型惊吓和惊讶程序来帮助飞行员应对飞行中的惊吓和惊讶,但是尚未研究程序执行后对表现的影响。目的:因此,我们在移动基座模拟器中使用单人驾驶的小型双螺旋桨飞机的非线性模型测试了新的助记型程序的有效性。方法:一个由 12 名航线飞行员组成的实验组接受了四项程序的培训:1. 冷静:深呼吸,坐直,放松肩膀和手。2. 观察:喊出基本飞行参数。3. 概述:制定关于问题的假设。4. 领导:制定并执行行动计划。由 12 名航线飞行员组成的对照组接受了控制训练。接下来,所有飞行员执行了四种包含惊吓和惊讶事件的场景。获得了有关飞行员表现、压力、程序应用和评估的数据。结果:该程序在测试场景中的应用率很高(90.0% 完全应用,100.0% 部分应用),飞行员对该程序的评价为积极(中位数:4,1-5 分制)。实验组的决策能力明显更出色,但即时反应明显不太理想。飞行员有时会在不合适的时刻应用该程序。结论:测试的助记符型程序结果令人鼓舞。然而,该程序可能会从修改中受益
700 p。; 24厘米。包含:数字化对罗马尼亚音乐治疗师 / Fulvia Anca Constantin的影响。正在进行中的工作:通过人工智能技术降低降噪信息:一项入门研究 / Horia Alexandru Modran,DoruUrsuţiu,CornelSamoilă和Tinashe Chamunorwa。用于电化学应用的打印可穿戴配件 / Petru Epure,DoruUrsuţiu,CornelSamoilă和Petru P. Espure。AES硬件实施基础在FPGA上具有改进的吞吐量 / Andreea Cristina Suiu Cristea和Balan Alexandra。新的漆箱便携式监视器 /彼得鲁·埃斯特(Petru Epure),安德拉·佩尔(Andra Perju)和彼得鲁(Petru P.)开发用于教授自动驾驶汽车行为的模拟器工具 / ioana-diana buzdugan,ioana-alexandra rosu和csaba anton ya。在大流行 /大流行 /富尔维亚·安卡丁的特兰西瓦尼亚大学使用移动学习。滑翔机飞行参数 /塞巴斯蒂安流行音乐,Marius Cristian Luculescu,Luciana Cristea,Florentina Cusura,Attila Laszlo Boer和Constantin Sorin Zamfira。室内空气质量监控的分布式物联网系统 / Marius Cristian Luculescu,Luciana Cristea,Constantin Sorin Zamfira,Attila Laszlo Boer和Sebastian Pop。实施的LabView应用程序,用于模拟脑部计算机接口的工作原理 / OANA ANDREEA RUSANU和ILEANA CANDARTA ROSCA。
针对 2010 年 4 月 10 日波兰空军 Tu-154M PLF101 飞机在斯摩棱斯克坠毁事件开展的调查。委员会工作的起点是分析有关 Tu-154M 大修的决定,然后为波兰总统莱赫·卡钦斯基率领的代表团访问卡廷、飞往斯摩棱斯克以及波兰和俄罗斯军事和民事服务活动做准备。委员会审查了从驾驶舱 (CVR) 提取和读出对话的历史以及飞行参数记录器的记录及其可靠性。根据 MAK 和部长 J. Miller 的委托,它重建了飞行轨迹和地面影响。针对 Tu-154M 飞行员,检查了复飞时的控制进场和离场路径,此前从未进行过此项工作,因为当时认为调查假设撞上桦树后的事件并不重要。与此同时,正是 Tu-154M 飞行的最后 20 秒决定了斯摩棱斯克惨案的发生。该委员会与美国威奇托国家航空研究所 (NIAR)、华沙军事技术大学、华沙航空研究所、华沙大学跨学科建模中心和华沙枢机主教斯蒂芬·维辛斯基大学合作,重建了 Tu-154M 飞机的结构,并根据 MAK 和米勒报告的参数以及华沙军事检察官办公室的专家模拟了其飞行和撞击地面的情况。委员会还重建了飞机残骸在整个毁坏区域的分布情况,以及遇难乘客尸体和残骸碎片的分布情况。委员会研究的一个重要部分是模拟和重建左翼和中翼的爆炸、重建飞机各个部件的解体情况以及烟火实验。委员会还分析了灾难调查的决策过程以及检察官办公室和航空委员会的程序。根据小组委员会的命令,波兰和美国对 Tu-154M No 101 残骸和 Tu-154M No 102 飞机上的爆炸痕迹进行了分析和研究。所有这些调查结果的相互关联使我们能够回答 2010 年 4 月 10 日斯摩棱斯克上空到底发生了什么。此外,还进行了物理学和空气动力学等领域的计算和分析,以证实或排除有关 2010 年 4 月 10 日事件的可能假设。