我们在 2014 年 2 月至 5 月期间进行了一项前瞻性观察研究。这项研究包括以色列空军 (IAF) 飞行学院以及教学和作战中队的 48 名参与者。中队包括固定翼运输机(Beechcraft Bonanza 和 King Air)、运输直升机(Blackhawks)和战斗机(Skyhawks 和 Falcon F16B)。我们排除了女性飞行员,因为 IAF 中的女性飞行员数量非常少,并且激素和月经状态的变化可能会影响体液平衡。7 我们还排除了正在服用任何药物或生病的飞行员。所有参与者均已获得知情同意。本研究已获得以色列国防军医疗队机构审查委员会的批准。所有参与者在飞行前均使用尿液试纸测量比重(SG,通过 Cobas 的 Combur10-Test 目测;尿液 SG 高于 1.020 被认为是脱水),并在仅穿着内衣的情况下使用电子秤(由 Beurer manufacturing, Golborne, UK)测量体重(以千克为单位,四舍五入到最接近的 100 克)。飞行员完成了一份问卷,其中包括有关计划飞行的数据、飞行前一晚的睡眠时间以及他们是否在飞行前 24 小时内进行过锻炼。身高是从医疗记录中获得的,BMI 的计算方法是体重(千克)除以身高(米)的平方。飞行是常规中队计划的一部分,并非由调查人员设计的。飞行后数据包括仅穿着内衣时用同一电子秤测量的体重、尿液试纸测量比重,以及一份填写完整的问卷,其中包括有关飞行期间食物和液体摄入量和排尿的数据,以及实际飞行细节。飞行前后对飞行员在飞机上摄入的食物和液体进行了称重。每次飞行时,使用气象袖珍仪表(Kestrel 1000 风速计,明尼阿波利斯,明尼苏达州)在地面测量环境热应激,并用热应激指数表示。飞行期间的液体损失计算为飞行前体重加上液体和食物摄入量,再减去飞行后体重。结果进一步根据飞行时间(以分钟为单位)进行标准化。我们认为体重减轻 1% 是有意义的体液流失。统计分析采用 SPSS v.22(IBM,纽约州阿蒙克)进行。统计显著性定义为 P , 0.05。
面料透气耐磨 DELTA 滑翔夹克采用透气、弹性好的 Softshell 面料制成。其防水表面可在飞行员仍在机场时提供防风和防小雨保护。一旦进入飞机,夹克可抵抗降落伞和飞机安全带的摩擦,并能够将内部产生的过多热量和水分输送到外部。夹克有天鹅绒般的羊毛衬里。
PC12 是同类飞机中制造最精良、飞行最安全的飞机之一。对吗?作者:John Morris 绝对正确!但既然如此,那么为什么在过去一年(2008 年 9 月至 2009 年 8 月)期间,[报告的] 事件(1)/ 事故(4 起致命)不幸增加?当局对所有 PC12 事故(视为已结案)以及美国大多数航空事故给出的主要原因是人为因素或空间定向障碍,通常意味着这是飞行员的错。无论使用何种措辞,将其归咎于飞行员,有时似乎是一个过于简单的借口,而且不公平,尽管将其归咎于其他人(或事物)已成为一种全国性的消遣。然而,与所有其他指责者不同,在提到人为因素的情况下,飞机事故调查的范围及其结论确实指向某种判断或决策错误,而这种错误至少可能导致最终结果。我们都应该意识到导致这一结果的事件“链”,飞行员的行为或不作为可以形成联系或打破这一链条。所以我们又一次在这里讨论决策和风险管理。为什么?在我看来,我们需要另一次审查,也许还需要一个不同的视角。FAA [风险管理手册 - 2009 年 5 月]、AOPA 和其他来源提供了风险管理工具。它们非常有用,至少应该定期参考。但本文将重点关注从不同角度看到的决策和风险管理,即对 PC12 能力可能过度自信,导致决策失误和风险增加。在我多年的教学中,我通常会提到 Pilatus 如何出色地“确保”PC12 的飞行员安全,这意味着消除了许多飞行员可能导致事故/意外的经典方式。但没有人可以完全消除人为因素或消除破坏系统的手段。最终,重力总是占上风。因此,我们希望努力涵盖所有有形因素,并为无形因素做好准备。我很好奇,驾驶员是否会对 PC12 及其功能过于自信。让我们谈谈有形因素。技术是否助长了这种过度自信?当今的技术比以往任何时候都更加神奇,而且变化/改进的速度不是几年,而是几个月。因此,我确实相信,这会产生问题,成为链条中的一个环节,直到飞行员适应更新的可用技术。这方面的例子包括改进的下载天气信息、WAAS 升级的航空电子设备-自动驾驶仪接口,甚至 PC12NG 与 Apex 系统。我所说的调整是指正确理解和利用这些新信息,因为它适用于增强 PC12 的飞行。这也意味着了解这项新技术不那么明显的局限性,从而知道何时使用标准、基本的飞行判断,如果有疑问。另一个有形的是飞行员驾驶 PC12 的一般熟练程度,而不仅仅是仪表熟练程度。FAA 通过改变方法提供了一些帮助
2.H. R. Blackwell、S. Q. Duntley 和 W. M. Kincaid,《用于探测地面目标的坦克安装探照灯特性》,坦克探照灯工作组,武装部队国家研究委员会视觉委员会,密歇根大学,1953 年。
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些天气飞行经验相对较少的飞行员,培养获取适当天气信息、在特定飞行中解释数据以及应用信息和分析做出安全天气飞行决策的技能。它是在许多气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达/里诺大学心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;B.L. 博士美国国家航空航天局艾姆斯研究中心的 Beard 和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia; Max Trescott,SJFlight;Arlynn McMahon,Aero-Tech Inc.;Roger Sharp,Cessna Pilot Centers;Anthony Werner 和 Jim Mowery,Jeppesen-Sanderson;Howard Stoodley,Manassas Aviation Center;Dan Hoefert;Lawrence Cole,FAA 人为因素研究与工程科学技术顾问;Ron Galbraith,FAA 空中交通管制员,丹佛 ARTCC;Michael Lenz,FAA 通用航空认证和运营部门;Christine Soucy,FAA 事故调查办公室;Rich Adams 博士,FAA 飞行标准服务部工程心理学家;William K. Krebs 博士,FAA 人为因素研究与工程科学技术顾问。本指南旨在成为一份动态文档,其中包含来自像您这样的 GA 飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快,安全!
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
前言 本指南旨在帮助通用航空 (GA) 飞行员,特别是那些气象飞行经验相对较少的飞行员,培养获取适当气象信息、在特定飞行中解读数据以及应用信息和分析做出安全气象飞行决策的技能。 本指南是在多位气象专家、航空研究人员、空中交通管制员以及通用航空教练和飞行员的协助和贡献下开发的。 特别感谢美国联邦航空管理局民航医学研究所 (CAMI) 的 Dennis Beringer 博士和 William Knecht 博士;内华达大学里诺分校心理学和生物医学工程系的 Michael Crognale 博士;伊利诺伊大学航空研究所的 Douglas Wiegmann 博士;美国国家航空航天局艾姆斯研究中心的 BL Beard 博士和 Colleen Geven;中田纳西州立大学的 Paul Craig 博士;小型飞机制造商协会的 Paul Fiduccia;SJFlight 的 Max Trescott;Aero-Tech Inc. 的 Arlynn McMahon;塞斯纳飞行员中心 Roger Sharp;杰普森-桑德森公司的 Anthony Werner 和 Jim Mowery;马纳萨斯航空中心的 Howard Stoodley;丹·胡弗特;美国联邦航空管理局人为因素研究与工程科学技术顾问 Lawrence Cole;美国联邦航空管理局空中交通管制员、丹佛 ARTCC 的 Ron Galbraith;美国联邦航空管理局通用航空认证和运营处的 Michael Lenz、美国联邦航空管理局事故调查办公室的 Christine Soucy;美国联邦航空管理局飞行标准服务部工程心理学家 Rich Adams 博士;以及美国联邦航空管理局人为因素研究与工程科学技术顾问 William K. Krebs 博士。本指南旨在成为一份动态文件,其中包含来自像您这样的通用航空飞行员和教练的评论、建议和最佳实践想法。请将评论和想法发送至:susan.parson@faa.gov。祝您飞行愉快、安全!
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,它使用计算机和相对较轻的电线取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统最先用于制导导弹,随后用于军用飞机。它在商用飞机上的应用延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成在高完整性数字 FBW 系统的总工程开发成本中占很大比例。本文讨论了与软件和冗余技术相关的问题。空客和波音等领先的商用飞机制造商都在其民用客机中采用 FBW 控制装置。本文介绍了他们的方法、控制理念的差异以及如何实现航空公司运营所必需的可比安全保障水平。 关键词 航空电子、软件工程、软件安全、容错 1. 简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换成传送到控制面的电脉冲。空客和波音在其商用飞机中使用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施其 FBW 系统时采用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。