诺斯罗普·格鲁曼公司任务扩展飞行器 (MEV) RPO 成像仪在 GEO 上的性能 Matt Pyrak 诺斯罗普·格鲁曼空间系统 约瑟夫·安德森 空间物流有限责任公司 摘要 本文将描述和说明由诺斯罗普·格鲁曼公司制造的空间物流有限责任公司任务扩展飞行器 (MEV) 使用的会合和近距操作 (RPO) 传感器的实际性能。MEV-1 于 2019 年发射,并于 2020 年 2 月与位于 GEO 墓地轨道上距离 GEO 约 300 公里的 Intelsat 901 卫星执行会合、近距操作和对接 (RPOD)。MEV-2 于 2020 年发射,并于 2021 年 2 月和 3 月与直接在地球静止轨道上的 Intelsat 10-02 卫星执行了类似的 RPOD 序列。这些飞行器使用三种不同的传感现象来提供所有必要的相对导航数据,以实现上述 RPOD 功能。这些包括可见光谱成像仪(窄视场和宽视场)、长波红外 (LWIR) 成像仪(窄视场和宽视场)和主动扫描激光雷达。本文将探讨这些传感器在 GEO 实际任务中的性能及其对未来空间态势感知能力的潜在影响。1. 简介 Space Logistics LLC 任务延长飞行器 (MEV) 是其主承包商 Northrop Grumman Space Systems (NG) 和 NG 的几家传统公司十多年开发工作的成果。MEV 被认为是新卫星服务市场中的第一代能力,它为未设计为需要维修的航天器提供宝贵的寿命延长服务。MEV 基于 Northrop Grumman 的传统 GEOStar 航天器平台构建,并采用了两项关键技术发展。第一个是准通用对接系统,它与目前在轨的大多数最初未设计为对接的 GEO 航天器兼容。第二,是整合了强大而灵活的 RPO 传感器套件,该套件由尖端硬件和软件组成,这些硬件和软件基于诺斯罗普·格鲁曼的传统 RPO 系统,包括 Cygnus 空间站补给飞行器。MEV 可延长未为在轨加油而建造的卫星的寿命。为了执行任务,MEV 与客户飞行器进行半自动会合,并使用大约 80% 的 GEO 卫星上存在的两个功能与其对接,这两个功能是面向天顶的液体远地点发动机 (LAE) 喷嘴和周围的发射适配器环。对接后,客户飞行器的推进系统和姿态控制完全禁用,从而使 MEV 能够全权负责客户飞行器的指向和轨道管理。虽然 MEV 对接系统无疑是艺术巧思的杰作,但本文将仅探讨 MEV RPO 传感器套件的性能,一组抗辐射尖端传感器,为 MEV 相对导航算法提供原始数据。这些包括可见光谱摄像机组、长波红外 (LWIR) 摄像机组和扫描激光雷达。RPO 传感器套件允许 MEV 从 50+km 处跟踪客户车辆,并在精确对接事件期间保持厘米级的相对位置。根据客户要求,MEV 和下一代车辆可以使用其传感能力从近距离对客户车辆进行多光谱检查,并通过激光雷达收集高密度 3D 检查扫描。但对这种能力最直观的展示来自 MEV-1 对接后发布的首批从 GEO 上方拍摄的在 GEO 带中处于活跃运行状态的航天器商业图像。
• 土耳其制造 • 坚固的复合材料 • 现代空气动力学外形 • 自主和手动飞行功能 • 垂直起飞和降落 • 10 公斤最大起飞 • 1.2 公斤有效载荷能力 • (热成像、变焦、双传感器或测绘相机) • 1 公斤有效载荷飞行时间 60-80 分钟 • 10 公里或 25 公里的视频传输 • 15 英寸屏幕、i5 处理器地面站(可选) • 10 英寸屏幕、i7 工业平板电脑地面站(可选) • 5 英寸/8 英寸屏幕遥控器或平板电脑(可选) • 在干扰环境中飞行(可选) • 目标跟踪(可选) • 目标坐标检测(可选) • 人脸识别 - 扫描(可选) • 使用激光测距仪测量距离(可选) • 测绘、3D 地形模型、GIS 数据收集(可选) • 气体泄漏检测(带摄像头)(可选) • 发现、监视和检测、搜索和救援和损害评估、地图绘制、地理信息系统和环境污染检测
美国政府 (USG) 希望能够在未来的采购项目中采购独立于飞行器采购的任务系统功能。为了实现这一目标,USG 获得了垂直升力联盟 (VLC) 的支持,以合作开发符合模块化开放系统方法 (MOSA) 原则的接口规范。VLC 协作团队由一群多元化的公司和主题专家 (SME) 组成,这些公司和主题专家涵盖飞机开发商、系统集成商、供应商和学术机构,以就最终产品达成尽可能广泛的共识。本文介绍了 AV/MSA 接口定义 (ID) 的概念。它描述了使用基于模型的系统工程 (MBSE) 工具和流程开发规范的方法,并介绍了每个 AV/MSA ID 任务和子任务的目标和结果。它讨论了 AV/MSA 接口定义在航空项目中的应用,作为更大、更长期的美国陆军 MOSA 转型的一部分,旨在支持下一代飞机设计,用于飞行器 (AV) 和承载飞机航空电子设备的任务系统架构 (MSA)。
在题为“无人驾驶飞行器 (UAV)”的特刊中,我们邀请了有关这些设备涉及 UAV 服务的各个方面的文章,包括数据处理和传感器融合、障碍物和碰撞规避、单个 UAV 或 UAV 组的轨迹生成、UAV 之间的通信和网络、各种目的的任务规划等。已提出并发表了涉及各种 UAV 相关技术的手稿,包括检查农场、葡萄园、牧场动物、石化炼油厂、输油管道和战场;向偏远地区和住宅运送杀虫剂和除草剂、餐馆食物和包裹;摄影、电影和新闻业的前沿;各种领域的测绘——光学、磁学、声学和化学;以及战场上的侦察和战术轰炸。
Skai 包括专利保护技术、空中交通服务以及电力和冗余方面的创新。其独特的品牌地位和市场进入策略确保其已准备好长期保持领先地位,具有广泛的应用和大众可及性。
摘要 — 介绍了一种新型四轴飞行器的概念设计和飞行控制器。该设计能够在飞行过程中改变无人机的形状,以实现位置和姿态控制。我们考虑动态重心 ( CoG ),它会导致无人机的转动惯量 ( MoI ) 参数不断变化。这些动态结构参数在系统的稳定性和控制中起着至关重要的作用。四轴飞行器臂长是一个可变参数,它由基于姿态反馈的控制律驱动。MoI 参数是实时计算的,并纳入系统的运动方程中。无人机利用螺旋桨的角运动和可变的四轴飞行器臂长进行位置和导航控制。重心的运动空间是一个设计参数,它受执行器限制和系统稳定性要求的限制。提供了有关运动方程、飞行控制器设计和该系统可能应用的详细信息。此外,通过航路点导航任务和复杂轨迹跟踪的比较数值模拟对所提出的变形无人机系统进行了评估。
[1] L. Derafa、L. Fridman、A. Benallegue 和 A. Ouldali,“四旋翼直升机姿态跟踪问题的超扭转控制算法”,载于《可变结构系统 (VSS)》,2010 年第 11 届国际研讨会,2010 年,第 62-67 页。[在线]。可访问:http://ieeexplore.ieee.org /stamp/stamp.jsp?arnumber=5544726 [2] A. Rabhi、M. Chadli 和 C. Pegard,“四旋翼飞行器的鲁棒模糊控制稳定”,载于《先进机器人技术 (ICAR)》,2011 年第 15 届国际会议,2011 年,第471-475 页。[在线]。可访问:http://ieeexplore .ieee.org =6088629 / stamp/ stamp。JSP?ar 编号 [3] H. Khebbache、B. Sait、F. Yacef 和 Y. Soukkou,“在执行器故障情况下对四旋翼飞行器进行稳健稳定”,《国际信息技术、控制和自动化杂志》,第 2 卷,第 2 期。2,2012 年,第 1-13 页。[4] P. Johan From、J. Tommy Gravdahl、K. Ytterstad Pettersen,《车辆操纵器系统》,Verlag,伦敦:Springler,2014 年。[5] Atheer L. Salih、M. Moghavvemi、Haider A. F. Mohamed、Khalaf Sallom Gaeid,《四旋翼无人机的建模和 PID 控制器设计》,IEEE,2010 年。[6] D. Lee、H. Jin Kim 和 S. Sastry,“四旋翼直升机的反馈线性化与自适应滑模控制”,《国际控制自动化与系统杂志》,第 3 卷,第 1 期。7,页。页。419-428,2009 年。[7] O. Gherouat、D. Matouk、A. Hassam 和 F. Abdessemed,“四旋翼无人机的建模和滑模控制”,J.自动化与系统工程,卷。10,号。3,页。150-157,2016 年。[8] Abraham Villanueva、B. Castillo-Toledo 和 Eduardo Bayro-Corrochano,“四旋翼多模式飞行滑模控制系统”,2015 年国际无人机系统会议 (ICUAS),美国科罗拉多州丹佛市,2015 年 6 月。[9] 易奎、顾锋、杨丽英、何玉清、韩建达,“四旋翼吊挂系统滑模控制”,第 36 届中国控制会议论文集,中国大连,2017 年 7 月 26-28 日。[10] A. Benallegue、A. Mokhtari 和 L. Fridman, “四旋翼无人机的反馈线性化和高阶滑模观测器”,《VariableStructure Systems》,2006 年。VSS’06。国际研讨会,2006 年,第365–372。5887–[在线]。可访问:http://ieee xplore.ieee.org/stamp/stamp.jsp?arnumber=1644545 [11] T. Madani 和 A. Benallegue,“四旋翼无人机的滑模观测器和反步控制”,美国控制会议,2007 年。ACC ’07,2007 年,第
可部署进入飞行器 (DEV) 技术在过去十年中取得了重大进展,地面测试开发活动和飞行测试演示。与传统的刚性进入飞行器相比,DEV 具有体积小、质量轻等优势,同时能够运送更大的有效载荷和更方便的着陆通道。DEV 的一个关键任务优势是能够从运载火箭内的紧凑存放配置转变为高阻力区域进入系统,用于运送着陆器、探测车、空中平台和轨道器(通过空气捕获)。这些优势涵盖了从小型卫星 (smallsat) 到载人级探索系统等各种任务类别。本文将描述 DEV 技术开发状态,重点介绍任务概念,并推荐未来的投资。简介
摘要:作为天问一号轨道器七个科学有效载荷之一,火星轨道器磁力仪(MOMAG)将测量火星及其周围磁场,以研究其空间环境及其与太阳风的相互作用。该仪器由两个相同的三轴磁通门磁力仪传感器组成,安装在3.19米长的吊杆上,间隔约90厘米。双磁力仪配置将有助于消除航天器平台和有效载荷产生的磁场干扰。传感器由安装在轨道器内部的电箱控制。每个磁力仪以1.19 pT的分辨率测量宽动态范围(每轴10,000 nT)的环境矢量磁场。两个磁力仪都以128 Hz的固有频率对环境磁场进行采样,但将在1至32 Hz之间的交替频率模型下运行以满足遥测分配。
图片列表 图 1.1:层流分离泡(Gad-El-Hak 提供)....................................................... 4 图 1.2:层流分离泡压力分布(Gad-El-Hak 提供)....................................... 7 图 1.3:表面油流 – 示例(Lyon 提供)................................................................. 9 图 1.4:表面粗糙度的影响(Gad-El Hak 提供)....................................................... 13 图 1.5:翻折翼型和未翻折翼型的阻力比较(Lyon 提供).................................... 14 图 2.1:改进的 S5010 顶部 MCL(Shkarayev 提供)......................................................... 21 图 2.2:n 阶多项式 MCL 的示例............................................................................. 22 图 2.3:翼型形状参数的描述............................................................................. 23 图 2.4:n 阶 MCL 比较...................................................................................................... 24 图 2.5:带定义多边形和控制点的贝塞尔曲线............................................................... 26 图 2.6:带定义多边形和控制点的贝塞尔 MCL ............................................................ 28 图 2.7:贝塞尔 MCL 比较......................................................................................................... 28 图 2.8:贝塞尔翼型前缘形状细节......................................................................................... 30 图 2.9:贝塞尔翼型后缘形状细节.........................................................................................