我们要感谢 Michael A. Demetriou 教授和 David J. Olinger 教授给予我们参与该项目的机会。他们在整个过程中的持续指导和支持为我们提供了必要的方向和动力,让我们能够坚持到最后。我们还要感谢 Alex Camilo 设计和构建我们的机载电子套件。我们要感谢 Adriana Hera、Raffaele Potami 和 Kimon Simeonidis 协助和指导我们开发 matlab 工具以及设置和开展校准实验。此外,我们还要感谢 John Blandino 教授、Roger Steele 和化学系对我们设备需求的帮助。此外,我们还要感谢 Neil Whitehouse 在制造项目所需组件方面提供的持续支持和指导。
提出了一种分布式电力推进多旋翼飞机的新设计方法,以确保从控制角度对转子故障具有鲁棒性。基于零可控性概念,推导出一个质量指标来评估和量化考虑转子故障的情况下给定设计的性能。制定了一个优化问题,其成本函数基于质量指标,其最优解确定了一组最优设计参数,可最大程度地提高飞机控制其姿态和位置的能力。通过对加州理工学院自主系统与技术中心正在开发的自主飞行救护车模型进行实验的结果,验证了所提出的设计程序的有效性。
本文介绍了一种 35% 大小的大型无人特技飞行平台 UIUC Aero Testbed 的开发,该平台主要用于在全飞行状态下进行空气动力学研究。该巨型飞机翼展 105 英寸(2.7 米),重量 37 磅(17 千克),由市售的无线电控制模型飞机制成,并进行了大量修改和升级,包括一个 12 千瓦的电动机系统,可提供超过 2 比 1 的推重比。它配备了一个航空电子设备套件,其中包含一个高频、高分辨率六自由度 (6-DOF) 惯性测量单元 (IMU),可让系统收集飞机状态数据。该信息集可用于生成高保真空气动力学数据,可用于验证大迎角飞行动力学模型。该项目的合作还使 Aero Testbed 具备了全自主和半自主飞行的能力,以便开展自主飞行研究。首先介绍了用于研究的特技无人机的文献综述。然后讨论了开发该平台的背景和动机。接下来是对所涉及的规划和开发的描述。最后,介绍了初步试飞结果,其中包括几次特技动作的飞行路径轨迹图。
当其在临近空间飞行并获得一定高度和速度时,凭借高升阻比的结构优势,仍可实现大范围的水平和垂直机动。它不仅克服了传统抛物线弹道机动性差的缺点,而且与常规高超声速巡航导弹相比,还具有射程远、机动性强的优势。随着临近空间高超声速滑翔飞行器能够丰富空间作战的内涵和理念、对传统作战模式提出挑战和冲击、具有广阔的军事应用前景等共识,各国都高度重视临近空间高超声速滑翔飞行器的弹道特性研究。参考文献[4]用数值方法研究了初始高度、角度和速度对弹道平衡滑翔状态的影响,并分析了跳跃形成的原因。文献[5]改进了平衡滑翔和跳跃滑翔两种典型弹道的弹道特性研究方法。文献[6]对跳跃式高超声速飞行器的弹道特性及参数优化问题进行了探讨。本文通过建模与仿真的方法,对某高超声速滑翔飞行器滑翔再入弹道特性进行了分析,并从射程、速度、高度、过载等方面探讨了飞行器动能武器系统防御该类飞行器的难点。为临近空间防御能力建设提供了方向。
委员会成员批准了 Joji Matsumoto Frank K. Lu 的硕士论文 ___________________________________________
首先,我要感谢 Rogelio Lozano 教授邀请我加入墨西哥的 CINVESTAV-IPN / CNRS UMI3175 LAMFIA Cinvestav,没有他,这篇论文就不可能完成。他鼓励我继续研究一个非常创新的概念,并帮助我调查其可行性。我感谢他贡献的所有时间和想法。我非常感谢墨西哥政府在他的支持下为我提供的奖学金。此外,这篇论文受益于该实验室和 ISAE SUPAERO(法国图卢兹)在 Patrick Fabiani 博士的指导下进行的联合监督。我得到了无人机概念所依赖的两个科学领域的顶尖研究人员的建议和指导:航空学和控制系统。我非常感谢我的论文指导老师 Rogelio Lozano 教授、Moisés Bonilla Estrada 教授和 Patrick Fabiani 博士,感谢他们在这项研究中对我的科学跟进和提出的深刻见解。我还要感谢 Cinvestav 和 ISAE SUPAERO 的所有工作人员和同事在过去三年中给予我的帮助。我特别感谢在无人机演示器开发过程中提供的帮助以及允许我使用几台原型机。最后,我要向我的家人表示最深切的谢意,感谢他们在这段丰富而漫长的冒险中给予的不懈支持。我要特别感谢我的兄弟 Adrien Cabarbaye 在电子学、计算机科学和英语方面的支持。
本文介绍了具有四个自由度 (4DOF) 的四轴飞行器原型的开发,该原型允许飞行器绕三个轴(偏航、俯仰和滚转)旋转以及沿 z 轴(高度)的位移。目标是获得使用商用四轴飞行器中最多组件(传感器和执行器)的工作台原型,并使用 PID、LQR 和滑模技术将其用于姿态和高度应用。从系统建模开始,展示其规格、使用的组件,最后以控制器的开发、仿真和应用结束。
1. 本军事手册经美国陆军导弹司令部批准使用,可供国防部所有部门和机构使用。 2. 有益的评论(建议、补充、删除)和任何可能有助于改进本文档的相关数据应发送至:美国陆军导弹司令部指挥官,收件人:AMSMI- RD-SE-TD-ST Redstone Arsenal,AL 35809,请使用本文档末尾的自备标准化文档改进提案(DD 表格 1426)或通过信函发送。 3. 本手册是在美国陆军物资司令部工程设计手册计划的赞助下开发的,该计划由美国陆军管理工程学院指导。三角研究研究所是本手册编写的主要承包商,编写合同编号为 DAAG34-73-C-0051。
1. 本军事手册经美国陆军导弹司令部批准使用,可供国防部所有部门和机构使用。 2. 有益的评论(建议、补充、删除)和任何可能有助于改进本文档的相关数据应发送至:美国陆军导弹司令部指挥官,收件人:AMSMI- RD-SE-TD-ST Redstone Arsenal,AL 35809,请使用本文档末尾的自备标准化文档改进提案(DD 表格 1426)或通过信函发送。 3. 本手册是在美国陆军物资司令部工程设计手册计划的赞助下开发的,该计划由美国陆军管理工程学院指导。三角研究研究所是本手册编写的主要承包商,编写合同编号为 DAAG34-73-C-0051。
1电子,国家研究与创新局(BRIN),万伦40135,印度尼西亚2电气工程和信息学学院,万伦技术研究所,班登40116,印度尼西亚3号,印度尼西亚3数据与信息科学研究中心,国家研究与创新机构(BRIN 40135印度尼西亚5研究中心,国家研究与创新局(BRIN),Tangerang Selatan 15314,印度尼西亚6数据与信息中心,国家研究与创新局(BRIN),雅加达10340,印度尼西亚7研究中心7研究中心,人工智能和网络安全委员(BNN),雅加达,13630,印度尼西亚9局长研究机构,研究设施和科学技术园,(BRIN),Tangerang Selatan 15314,印度尼西亚10号diponegoro University,Semarang 50275机械系,印度尼西亚50275,印度尼西亚11号研究中心,全国研究中心,国家研究中心(Innigia Interrication and Innigia Indernia andia ininnia andia andia ininnia andia andia ininnia)印度尼西亚萨拉巴亚60111年11月技术研究所,塞普卢(Sepuluh),13 13研究中心,水力动力学技术中心,国家研究与创新局(BRIN),苏拉巴亚60112,印度尼西亚14号印度尼西亚研究中心,工业和制造业技术研究中心,国家研究与创新机构,国家研究与创新机构(Brin