在第 3 年,您可以自由选择符合自己兴趣并利用自己技能的模块。一项受欢迎的活动是参加克兰菲尔德航空学院的飞行测试短期课程,该课程在装有仪表的 Jet stream 飞机上进行飞行实验。当飞机失速时,您将从仪器上读取读数,这是一种令人启发的体验。第三年的设计项目将建立世界领先的研究活动。这个双模块将整合核心学科主题,并运用创造性思维来设计符合规范的产品。这是一个以行业为重点的模块,旨在模拟现实世界的专业环境,您将在其中独立工作,并将在团队中聚在一起解决复杂的规范、与客户谈判、制作和评估复杂的设计以及制定商业案例。特别关注创新设计,以及从可持续性的角度评估和改进产品。
摘要 外层空间是一个恶劣的环境,包含多种形式的压力,如宇宙辐射、太空真空、极端温度和压力、紫外线辐射和重力变化。地球大气层有几层,将微生物和陆地生命暴露在恶劣的外部环境中。为了研究微生物在极端条件下的生存极限,必须研究微生物对太空相关压力的反应。本章总结了为研究微生物在太空中的存在和反应而进行的各种气球和飞行实验。研究国际空间站的微生物群很重要,因为致病细菌会对封闭环境中的宇航员健康构成重大风险。因此,研究微生物在太空中的出现、生态、多样性、反应和适应性对于了解生物在恶劣条件下生存的极限至关重要。研究太空中的微生物生命也有助于预测微生物在行星间旅行的合理生存和持久性,这对岩石胚种论理论和行星保护至关重要。
全体会议 开幕式后的特别议程 组织会议(有待确定) 技术会议 a)化学推进和吸气式发动机 b)电力和先进推进 c)材料和结构 d)天体动力学、导航制导和控制 e)流体动力学和气动热力学 f)小型卫星:与 NSAT 联合会议 g)空间运输 h)微重力科学与技术 i)热控制 j)卫星通信、广播和导航 k)载人和机器人太空探索科学与技术 m)探空火箭、气球和使用小型飞行器的飞行实验 n)地球观测 q)空间动力系统 r)空间环境和碎片 t)系统工程和信息技术 u)造福全民的空间教育和推广 v)空间法、政策和历史 w)安全和任务保障 学生会议 优秀论文将获得特别奖。海报会议文化之夜(待定)航天器控制系统设计大赛将为拥有出色控制算法的顶级参赛者颁发奖项。
故障机电执行器 (EMA) 数据集的质量和稳健性对于加强此类系统的飞机预测数据分析至关重要。主要飞行表面控制执行器尤其令人感兴趣,因为缺乏已知故障数据会削弱对组件和随后的子系统健康预测的信心。为了协助这项研究,我们设计和建造了一个 EMA 测试台,以帮助预测故障执行器相对于其正常执行器的寿命和磨损特性。在飞行实验期间将故障注入执行器,同时记录执行器参数,然后在地面进行后处理。本文对当前 EMA 测试台设计的可用性和可靠性进行了评估。利用现场类似组件的性能历史,本文特别展示了影响测试系统设计和故障数据质量的测试台设计方面。这项研究旨在验证测试台设计,并提供设计建议,以提高测试台的可用性和提供高质量和稳健的故障数据集的能力。 *
飞行员的生理、心理、生理特征都会对飞行安全产生影响,其中主要体现在飞行员的意图上。换言之,飞行员在各种因素影响下,对飞行状态产生的心理体验,以及表现出的决策偏好或行为价值。飞行员的意图是反映飞行员在飞机机动过程中表现出的认知状态。意图的探索对于自动驾驶仪和飞行控制主动安全系统的研究非常重要。同时,它也是飞行中人为因素研究中经常涉及的一个重要概念,特别是飞行员的微观行为。本文以飞行员的意图为研究对象;通过设计的模拟飞行实验,分析飞行员的生理-心理-生理参数的影响因素。利用随机森林分析方法对影响飞行员意图的主要影响因素进行排序,形成因素序列。研究结果为进一步研究飞行员意图识别奠定了良好的基础。
固定翼 UAV 设计通常相对于纵向平面对称,即机身左侧与右侧对称。目的是使广义气动力对称,以便在任一方向转弯时具有等效机动能力。为了确定给定机身设计的力,工程师通常会收集风洞测试或飞行实验中捕捉力的数据。无论哪种情况,我们都会期望力的大小相等,以对称使用执行器并镜像对称平面上的相对速度。然而,当力和力矩测量设备的坐标轴与机身固定坐标系的坐标轴不对齐时,收集到的数据并非如此(通常情况如此)。这种不对称随后会传递到已识别的模型,并可能对基于模型的控制造成问题,而这正是我们所针对的用例。通过仔细的安装程序可以将错位保持在较小水平,这样就可以通过适当的后处理校准剩余的不对称性。然而,似乎没有一种系统性的校准方法来做到这一点
故障机电执行器 (EMA) 数据集的质量和稳健性对于加强此类系统的飞机预测数据分析至关重要。主要飞行表面控制执行器尤其令人感兴趣,因为缺乏已知故障数据会削弱对组件和随后的子系统健康预测的信心。为了协助这项研究,我们设计和建造了一个 EMA 测试台,以帮助预测故障执行器相对于其正常执行器的寿命和磨损特性。在飞行实验期间将故障注入执行器,同时记录执行器参数,然后在地面进行后处理。本文对当前 EMA 测试台设计的可用性和可靠性进行了评估。利用现场类似组件的性能历史,本文特别展示了影响测试系统设计和故障数据质量的测试台设计方面。这项研究旨在验证测试台设计,并提供设计建议,以提高测试台的可用性和提供高质量和稳健的故障数据集的能力。*
摘要:非系留子尺度模型测试,通常称为子尺度飞行测试,传统上在航空研究和开发中用途较小,但意义重大。随着电子、快速成型和无人机技术的最新进展扩大了其功能并降低了成本,这种实验方法在学术界和业界越来越受到关注。然而,子尺度模型不能满足模拟全尺寸飞行所需的所有相似性条件。这导致了各种缩放方法和其他替代应用。通过文献综述和对不同缩放策略的分析,本研究全面介绍了近年来子尺度飞行测试的使用情况,并综合了其主要问题和实际局限性。结果表明,虽然在某些飞行条件下估计全尺寸特性仍然是一个有趣的应用,但子尺度模型正逐渐发挥更广泛的作用,成为具有宽松相似性约束的低成本技术测试平台。通过飞行实验,讨论和评估了作者和其他组织实施的解决已发现的实际挑战的不同方法。
可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并探究腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了受模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可最大限度地减少跟踪误差和传输成本。此外,我们通过将碳纤维棒固定在胸腹关节上,测试了限制腹部运动对活天蛾自由飞行的影响。腹部受限的飞蛾表现比假治疗飞蛾差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
昆虫飞行控制研究主要集中在翅膀的作用上。然而,飞行过程中腹部的偏转可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并询问腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可以最大限度地减少跟踪误差和传输成本。此外,我们通过在胸腹关节上固定碳纤维棒来测试限制腹部运动对活天蛾自由飞行的影响。腹部受限的飞蛾表现比假治疗飞蛾差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。