—G-10 航空航天行为工程技术 (ABET) 指导小组 G-10A 航空信息系统 G-10EAB 执行顾问组 G-10D 彩色显示器 G-10E 增强视觉/合成视觉系统 G-10G 逼真训练 G-10J 制图 G-10M 多功能显示器 G-10OL 作战激光器 G-10P 透视飞行引导 G-10T 激光安全隐患 G-10U 无人航空系统 G-10V 垂直飞行 G-10W 气象信息系统 G-10WV 尾流涡 G-10TDS 触摸交互式显示系统 G-10HWD 头戴式显示器
K. 微下击暴流风切变恢复的飞行引导研究 ............ David A. Hintorg NASA LaRC L. 风切变检测算法的分析与合成 ................................ Kioumars Najmabadi,波音 M. 使用个人计算机分析制导律性能 ................ Z Rene Barrios,霍尼韦尔�Sperry N. 机组人员与风切变系统的接口 ................................ Dave Carbaugh,波音 O.避免风切变的专家系统 ................................ Robert Stengel 和 Alex Stratton,普林斯顿大学 P. 起飞滑跑期间风切变对飞机停止距离的影响 ...... Terry Zweife_ Honeywell�Sperry Q.风切变风模型模拟器分析状态 ......................... Bernard Ades,DGAC/SFACT/TU-France R. 风切变预测检测器技术研究状态 ......................... C. Gandolfi,DGAC/STNA/3E S. 问题和10 月 19 日第一场和第二场的答案......................
2015 年 3 月 10 日,一架空客 A330 客机(注册号 9M-XXM,由马来西亚航空公司亚洲航空 X 运营)正在执行从新南威尔士州悉尼飞往马来西亚吉隆坡的定期客运服务。飞机从 16R 跑道起飞时,空中交通管制发现飞机进入平行跑道 16L 的起飞航道。根据空中交通管制的建议,机组人员发现机载导航系统存在问题。尝试排除故障并纠正问题导致导航系统以及飞机的飞行引导和飞行控制系统进一步恶化。机组人员选择停止飞行,但无法返回悉尼,因为悉尼地区的天气恶化,可用的系统限制了飞行只能在目视条件下进近。飞机改为通过雷达引导飞往维多利亚州墨尔本,并在目视条件下完成了飞行。
O. Ohneiser 1 ,M. Jauer 1 ,H. Gürlük 1 ,H. Springborn 2 1 德国航空航天中心 (DLR),飞行引导研究所,Lilienthalplatz 7,38108 Braunschweig,德国 2 FH Joanneum - 应用科学大学,Alte Poststraße 149,8020 Graz,奥地利 摘要 面对以飞行为中心的空中交通管制 (ATC) 和未来管制员工作岗位 (CWP) 的更多监控任务,空中交通管制员 (ATCo) 始终将注意力集中在人机界面 (HMI) 上的相关位置变得更加重要。本文概述了不同领域有关注意力和注意力引导 (AG) 的相关文献,解释了无扇区空中交通管理 (ATM) 的 AG 原型的概念及其在单一欧洲天空 ATM 研究 (PJ.16-04-03,SESAR2020) 过程中的验证计划。 AG 原型考虑了三个方面。首先,所需的关注区域:辅助系统根据雷达和飞行计划数据等输入数据计算 ATCo 应关注的位置。其次,依靠眼动追踪和用户输入的外部系统确定当前 ATCo 的关注点。第三,如果所需的关注区域和实际关注区域不同,将触发引导 ATCo 注意力的机制,同时考虑升级视觉提示的策略。后者包括智能显示与时间、位置和外观相关的动作指示器以及战术前注意力不集中指示器
空中数据计算机:双霍尼韦尔 AZ 810 DADC 自动测向仪:双罗克韦尔柯林斯 ADF-462 ADF 接收器 自动油门:霍尼韦尔自动油门系统 驾驶舱语音记录器:费尔柴尔德 120 分钟 CVR 通信:三台柯林斯 VHF-422D VHF 收发器 控制显示单元:三台霍尼韦尔 CD-820 FMS CDU 数据加载器:霍尼韦尔 DL-1000 数据加载器 测距设备:双罗克韦尔柯林斯 DME-442 DME 收发器 紧急定位发射器:Artex C406-2 ELT 增强型近地警告系统:霍尼韦尔 Mark V EGPWS 飞行引导计算机:双霍尼韦尔 FZ-800 飞行控制计算机 飞行管理系统:三重 Honeywell FMS NZ-2000 FMS 装置 全球定位系统:双 Honeywell GPS 装置 高频:双 Rockwell Collins 728U-2 HF 收发器 远程导航:三重 Honeywell Laseref IV 惯性参考装置 导航:双 Rockwell Collins VIR-432 导航接收器 无线电高度计:双 Honeywell RT-300 无线电高度计 选择呼叫:Jet Call 5 选择呼叫解码器 交通警报和防撞系统:带 Change 7.1 的 ACSS TCAS II 应答器:双 Rockwell Collins TDR-94D 应答器,带 ADS-B 输出版本 2 气象雷达:Honeywell Primus WR-800 气象雷达
有许多事故和事件与模式混淆有关。自动油门和自动驾驶仪传统上是驾驶舱中的独立系统,但它们可以通过飞行物理相互作用。航空电子工程师一直在应用自动化来减少飞行员的工作量并提高飞行安全性。虽然基本的自动化系统执行相当简单的任务,例如保持高度或航向,但现代飞行引导和控制系统通常具有不同的操作模式。结合眼动追踪和 NASA-TLX 测量,将新的飞行模式指示器 (FMA) 概念与传统 FMA 进行了比较。该实验涉及 17 名年龄在 22 至 47 岁之间的参与者(M = 29.18,SD = 6.73)。结果表明,增强显示显著降低了 NASA-TLX 对心理需求、时间需求和努力的感知工作量;同时通过呼叫模式变化的感知提高了爬升转弯期间的性能和情况意识。此外,参与者的注视持续时间在传统设计和通过添加绿色边框的视觉提示的增强设计之间对空速和高度指示器有显著差异。解释现有飞行模式提示需要付出相对较高的认知努力,这无疑是造成模式混淆的一个因素。注视持续时间和主观工作量之间的显著差异证明了所提出的可视化提示对 FMA 的潜在好处。作者:simp
高级通用航空研究模拟器。这款固定式飞行模拟器专为研究应用而设计。它代表了 Piper Malibu/Matrix 级飞机(高性能、可伸缩起落架)。经过修改,它可以代替或与传统的圆形仪表一起提供可重新编程的电子飞行仪表,包括主飞行显示器、多功能显示器、平视显示器(插图)以及各种系统和/或导航显示器。它可以配置具有适当力负载的传统飞行控制装置或电传操纵侧臂性能控制系统。当采用玻璃座舱配置时,它代表了一种高性能、技术先进的飞机。它可以与其自己的 180 度窗外视觉系统(如图所示)一起使用,也可以与广角视觉系统一起使用。使用该设备的研究包括对飞行显示器(地形描绘合成视觉 PFD/HUD、补充地形显示器、NEXRAD 显示器、抬头和俯视飞行引导空中高速公路显示器、主姿态指示器和备用姿态指示器、附加或便携式导航显示器)的调查、飞行控制(常规和电传操纵性能控制)、故障期间的飞行员表现(自动驾驶仪、俯仰配平、ADI 部分面板故障、异常姿态恢复)和飞行员决策(使用天气显示器和/或信息来避免恶劣天气)的调查。数据收集功能包括飞行性能、视频和音频数据的数字捕获。
先进通用航空研究模拟器。这种固定式飞行模拟器专为研究应用而设计。它代表了 Piper Malibu/Matrix 级飞机(高性能、可收放起落架)。经过修改,它可以显示可重新编程的电子飞行仪表,代替或与传统的圆形表盘仪表一起使用,包括主飞行显示器、多功能显示器、平视显示器(插图)和各种系统和/或导航显示器。它可以配置具有适当力负荷的传统飞行控制系统或电传操纵侧臂性能控制系统。当采用玻璃座舱配置时,它代表了一种高性能、技术先进的飞机。它可以与其自己的 180 度窗外视觉系统(如图所示)一起使用,也可以与广角视觉系统一起使用。使用该设备的研究包括对飞行显示器(地形描绘合成视觉 PFD/HUD、辅助地形显示器、NEXRAD 显示器、抬头和俯视飞行引导空中高速公路显示器、主姿态指示器和备用姿态指示器、附加或便携式导航显示器)的调查、飞行控制(常规和电传性能控制)、故障期间的飞行员表现(自动驾驶仪、俯仰配平、ADI 故障导致部分面板、从异常姿态中恢复)和飞行员决策(使用天气显示器和/或信息来避免恶劣天气)的调查。数据收集功能包括飞行性能、视频和音频数据的数字捕获。