本报告涵盖了作者认为特别重要的特定领域,特别是测试准备和数据分析部分。适当的准备和数据分析是任何成功飞行测试计划的基石,因此在本报告中得到了广泛的关注。此外,测试 DFCS 时潜在错误的后果可能是灾难性的,导致飞机损失或生命损失。由于这种类型的飞行测试通常很危险,因此测试团队有责任仔细规划和执行该计划。测试团队必须了解飞机预计会做什么、正在做什么以及两者的原因。有了这些知识,DFCS 飞行测试团队可以在执行测试程序期间做出适当的决定。在不最小化所涉及的其他领域的前提下,作者认为准备和数据分析是测试的两个最重要方面,因此强调这些领域。
CEASIOM,即飞机综合与综合优化方法的计算机化环境,是一个集成了特定学科概念设计工具的框架。在设计的早期阶段,能够预测飞机的飞行和操纵品质非常有用。为了对所研究的配置进行此操作,需要计算空气动力学数据库并将其与稳定性和控制工具相结合以进行分析。本文介绍了 CEASIOM 的自适应保真计算流体动力学模块如何计算飞机配置的空气动力学数据库,以及如何通过飞行控制系统设计器工具包模块分析该数据以确定飞机的飞行品质和控制规律。本文将预测的飞行品质与波音 B747 飞机的飞行测试数据进行比较,以验证整体方法的优良性。
无人驾驶飞行器 (UAV) 是一种飞行机器人,在民用和军用领域均有使用,且使用量呈急剧增长趋势。它们已广泛应用于民用领域,如执法、地球表面测绘和灾害监测,以及军事任务,如监视、侦察和目标捕获。随着对无人驾驶飞行器使用量的需求不断增长,在自主性、飞行能力和有效载荷方面具有更大进步的新型设计正在涌现,可携带更复杂、更智能的传感器。随着这些技术进步,人们将为无人驾驶飞行器找到新的作战领域。本论文主要研究新型无人驾驶飞行器 (SUAVI:萨班哲大学无人驾驶飞行器) 的设计、构造和飞行控制。SUAVI 是一种电动紧凑型四倾翼无人驾驶飞行器,能够像直升机一样垂直起降 (VTOL),并通过倾斜机翼像飞机一样水平飞行。它携带机载摄像机,用于捕捉图像并通过与地面站的射频通信进行广播。在 SUAVI 的气动和机械设计中,考虑了飞行时间、飞行速度、尺寸、电源和要执行的任务。气动设计是通过考虑气动效率的最大化和安全飞行特性来进行的。推进系统中的组件的选择是为了优化推进效率并满足要求
5.7 失速条件下 IC 和 LM 的控制功率评估图表和调整后的气动数据......................................................................................................... 101
摘要—民用飞机的电子飞行控制系统已经进行了改进,以利用技术改进。新技术成熟后可以融入飞机。人们考虑向计算机和执行器/传感器之间的数字网络以及执行器和传感器的更多分布式处理方向发展。因此,未来的飞机系统可能采用新的架构。困难在于实现相同的安全性和可用性要求以及额外的运行可靠性(航空公司要求)。工程师面临的挑战是以合理的成本设计批量生产的容错系统。对空客和波音飞机现有电子飞行控制系统架构以及未来需求的分析促使我们简要概述了基于渐进式需求注入的架构设计过程的增量方法。索引术语—可靠性、容错、安全分析、关键航空电子系统、数字电子飞行控制系统
为了简化调试,还实现了例程 off()。在调试模式下,可以通过 shell 输入“off”停止实时任务。函数 Controllaws() 由几个具有不同速率的定律组成。我们以 100 Hz 的速率计算控制增强系统,以 33.3 Hz 的速率计算自动驾驶定律和其他参数。为了提高运行效率,使用内部计数器而不是任务来调度这些定律。控制律通常由求和块、0 阶块、1 阶块、2 阶块、积分块、淡出块、死区块和饱和块组成。在我们的系统中,控制律块由 C++ 类实现。Tustin 变换具有叠加特性,因此软件可以按框图顺序处理控制律。为了简化系统调试,对于传感器输入和其他参数,使用浮点而不是整数作为数据类型;对于传感器输入,使用电压而不是实际物理值作为值。该软件是用 C++ 语言编写的。C++ 比 C 具有更多优势,例如封装和覆盖。有时,这会导致可靠性问题。在飞行控制应用中,应认真考虑这一点。我们的解决方案是:1)在实时任务运行之前创建所有对象; 2)在 IF-BIT 例程中检查系统健康状况。
为了简化调试,还实现了例程 off()。在调试模式下,可以通过 shell 输入“off”停止实时任务。函数 Controllaws() 由几个具有不同速率的法则组成。我们以 100 Hz 的速率计算控制增强系统,以 33.3 Hz 的速率计算自动驾驶法则和其他参数。为了提高运行效率,使用内部计数器而不是任务来调度这些法则。控制法则通常由求和块、0 阶块、1 阶块、2 阶块、积分块、淡出块、死区块和饱和块组成。在我们的系统中,控制法则块由 C++ 类实现。Tustin 变换具有叠加特性,因此软件可以按框图顺序处理控制法则。为了简化系统调试,对于传感器输入和其他参数,使用浮点而不是整数作为数据类型;对于传感器输入,使用电压而不是实际物理值作为值。该软件是用 C++ 语言编写的。 C++ 比 C 具有更多优势,例如封装和覆盖。有时,这会导致可靠性问题。在飞行控制应用中,应认真考虑这一点。我们的解决方案是:1)在实时任务运行之前创建所有对象;2)在 IF-BIT 例程中检查系统健康状况。
第一个民用飞机的电动飞行控制系统由 Aerospatiale 设计并安装在协和式飞机上。这是一个适用于所有控制面的模拟全权限系统。控制面位置指令与操纵杆输入成正比。三个轴上都配有机械备用系统。20 世纪 80 年代初,空中客车 A310 项目在几架民用飞机上出现了第一代采用数字技术的电动飞行控制系统。这些系统控制缝翼、襟翼和扰流板。这些系统的设计具有非常严格的安全要求(控制面失控的可能性必须极小)。由于这些功能的丧失会导致机组人员工作量大幅增加,因此在某些情况下可能会失去系统。
空气数据传感器 航空电子系统 交叉通道数据链 数字发动机控制单元 飞行控制计算机 飞行控制系统 惯性测量单元 踏板传感器单元 操纵杆传感器和接口控制组件 公用控制系统
smartcockpit.com › docs › KFC_100 PDF 2020年11月11日 — 2020年11月11日 系统提供最大的可靠性... 所有 KFC 3100 的数字... 在没有首先检查您的 FAA 批准飞机的情况下尝试。