摘要:城市空中交通 (UAM) 是指在大都市地区为有人驾驶飞机和无人机系统提供安全高效的空中交通运营,目前正由工业界、学术界和政府进行研究和开发。这种交通方式为构建一个绿色可持续的子行业提供了机会,它借鉴了数十年来航空业的经验教训。由于电动垂直起降 (eVTOL) 飞机操作无污染且空中交通管理简单,目前正在为此目的开发和试验这种技术。然而,要成功完成认证和商业化阶段,需要克服几个挑战,特别是在性能方面,例如飞行时间和续航能力以及可靠性。本文开发了一种快速确定 eVTOL 多旋翼飞行器推进链组件尺寸和选择方法,并在 GTOW 为 15 公斤的电动多旋翼飞行器缩小比例原型上进行了验证。该方法与储能系统配置的比较研究相关,以评估它们对飞行器飞行时间的影响。首先,使用全局非线性优化选择最佳的电机/螺旋桨对,以最大限度地提高这些部件的比效率。其次,确定五种储能技术的尺寸,以评估它们对飞行器飞行时间的影响。最后,基于此尺寸确定过程,使用基于推进链供应商数据的回归方法评估每种储能配置的优化推进链总起飞重量 (GTOW)。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。
每个内爆会产生许多中子:通常在原子核中与质子和伽马射线一起限制的中性颗粒。这些颗粒的庞大数量会在内爆室周围产生严重的辐射环境,并会损害许多常见类型的诊断仪器。Photek探测器中使用的真空管技术可以在这些高水平的辐射中生存,这也使它们成为空间严峻的辐射环境的宝贵技术。Photek PhotodeTector不仅可以在ICF内爆的严酷辐射环境中幸存下来,而且还在世界上最快的光检测器中。
摘要我们提出了一种新颖的旋转时间分辨出贝塞尔轻弹刺激的拉曼散射(B 2 -SRS)显微镜,用于更深的组织3D化学成像,而无需机械Z扫描。为完成任务,我们想到了一种独特的方法,可以通过在样品中生成反式泵和stoke bessel轻子弹来实现光学切片,在该泵中,Bessel Light Bullets的组速度是Ultraslow的组速度(例如VG≈0.1C),并通过引入Anglable Angemable Plights spationd spations spationgions spat-spationd。我们从理论上分析了共线多色Bessel Light Bullet Bullet Generations和速度控制的工作原理,并使用相对的SRS 3D深组织成像的相对时间分辨出的检测。我们还构建了B 2 -SRS成像系统,并在各种样品中使用Bessel Light子弹进行了B 2 -SRS显微镜的第一个演示,用于3D化学成像(例如,聚合物珠幻像(,是春季洋葱组织和猪脑脑),具有高分辨率的聚合物珠幻象,具有生物样品)。与常规的SRS显微镜相比,B 2 -SRS技术在猪脑组织的成像深度上提供了> 2倍的改善。使用B 2 -SRS中开发的反式超声贝塞尔轻子弹在组织中的光学切片方法是通用且易于执行的,并且很容易扩展到其他非线性光学成像模式,以推动在生物医学和生物医学系统和超越生物学和生物医学系统中促进3D显微镜成像。
1引言本文扩展了Bruza等人的先前工作。1通过对使用大型单光雪崩二极管(SPAD)摄像机进行荧光深度感测所涉及的方法和技术方面进行更全面的描述。此外,本文详细阐述了校准曲线的扩散,这是以前获得有限覆盖率的关键方面。还提供了对技术局限性的详尽回顾,并提供了支持其性能的定量测量简介。最后,本文提出了对临床方案中技术和潜在应用的潜在改进,为进一步的研究和实际实施提供了宝贵的见解。手术切除仍然是癌症治疗的关键方法;绝大多数乳腺癌,结直肠癌,肺和膀胱癌患者都接受了手术切除术,这是护理标准的一部分。2尽管术前成像已经显着提高,但手术的成功很大程度上取决于外科医生使用常规的白光视觉和触诊来定位病理的能力。3,4在过去的三十年中,荧光引导手术(FGS)已成为一种有前途的技术,用于定义肿瘤位置和术中边缘。使用FGS对肿瘤进行术中可视化不仅有可能实现完整的切除措施,还可以通过减少对正常组织的不必要损害,5 - 8
Mariluz Rojo Domingo * 1,2,Christopher C Conlin,PhD * 3,Roshan A Karunamuni,PhD 2,Courtney Ollison,Courtney Ollison,BS 2,Madison t Baxter,MS 2,MS 2,Karoline Kallis,Karoline Kallis,Karoline Kallis,Phd 2,Deondre d do,do do do,bs 1,2 Shabaik,医学博士5,Michael E Hahn,医学博士,博士3,Paul M Murphy,医学博士,博士3,Rebecca Rakow-Penner,MD,PhD 3,Anders M Dale,Anders M Dale,Phd 3,6,7,Tyler M Seibert,MD,MD,博士学位1,2,3 *这些作者在1,2,3 *
●被明确评估为数字治疗性或干预措施●取决于医院内或链式管理,不太可能在现实环境中访问,例如,磁共振或计算机断层扫描成像●专门训练的算法,用于综合训练有素的算法,用于综合培训和集合的Imagect Imecting或Electeronic Health Records数据。我们确实包括了对能够通过远程数字传感器技术在实验室环境外收集的数据培训的任何算法
摘要人类机器人合作(HRC)在先进的生产系统中越来越重要,例如在行业和农业中使用的系统。这种类型的协作可以通过减少人类的身体压力来促进生产率的提高,从而导致伤害减少并改善士气。HRC的一个关键方面是机器人安全遵循特定的人类操作员的能力。为了应对这一挑战,提出了一种新的方法,该方法采用单眼视力和超宽带(UWB)收发器来确定人类目标相对于机器人的相对位置。UWB收发器能够用UWB收发器跟踪人类,但具有显着的角度误差。为了减少此错误,使用深度学习对象检测的单眼摄像机来检测人类。使用基于直方图的滤波器结合了两个传感器的输出,可以通过传感器融合来减少角度误差。此过滤器项目并将两个源的测量值与2D网格相交。通过结合UWB和单眼视觉,与单独的UWB定位相比,角度误差的降低了66.67%。这种方法表明,以0.21 m/s的平均速度跟踪人行走时,平均处理时间为0.0183,平均定位误差为0.14米。这种新颖的算法有望实现有效和安全的人类机器人合作,为机器人技术提供了宝贵的贡献。
评估了使用脉冲 keV 离子束在透射几何中对薄膜和准二维系统进行灵敏的多元素分析的飞行时间反冲检测的潜力。虽然飞行时间方法允许同时检测多种元素,而最大程度上不受反冲电荷状态的影响,但 keV 射弹能量可保证高反冲截面,从而在低剂量下获得高灵敏度。我们展示了该方法的能力,使用 22 Ne 和 40 Ar 作为射弹,穿过具有可选 LiF 涂层和单晶硅膜的薄碳箔,以用于不同的样品制备程序和晶体取向。使用大型位置灵敏探测器(0.13 sr),深度分辨率低于 6 nm,灵敏度低于 10 14
摘要:研究了两个电子表面单次交叉散射的过渡路径飞行时间。这些飞行时间揭示了非平凡的量子效应,例如共振寿命和非经典通过时间,并揭示了非绝热效应通常会增加飞行时间。飞行时间是使用数值精确时间传播计算的,并与最少开关表面跳跃 (FSSH) 方法获得的结果进行了比较。两种方法的比较表明,只有当散射在相关绝热表面上被经典允许时,FSSH 方法才适用于过渡路径时间。然而,当隧穿和共振等量子效应占主导地位时,FSSH 方法不足以准确预测正确的时间和过渡概率。这些结果突出了不考虑量子干涉效应的方法的局限性,并表明测量飞行时间对于从时间域深入了解非绝热散射中的量子效应非常重要。Q