用于特定的训练任务,从简单的桌面设备、仪表程序训练器(如图 5 所示)到导航程序训练器,即使模拟器可能缺少运动系统、视觉系统甚至飞行员控制装置,机组人员也可以遵循飞行计划。这些设备包括笔记本电脑系统,用于训练机组人员操作飞机航空电子设备,也用于训练维修人员,例如,练习发动机启动程序,而不会产生任何发动机磨损和操作实际飞机发动机的相关成本。使用此类系统,操作员只需触摸屏幕即可按下开关或移动选择器。基于计算机的培训 (CBT) 系统可以结合视频、声音和计算机动画来复制系统行为。CBT 系统还包括培训软件,使学生能够按照自己的节奏进步并监控学生在培训期间的表现。
4.0 资格和批准指南 (QAG)。 4.1 QAG 详细描述了基本仪表飞行训练器或飞行程序训练器的模拟飞机系统、设计标准和功能。基本仪表飞行训练器所需的设计标准在附录 A 中描述,飞行程序训练器的其他设计标准在附录 B 中描述。QAG 必须包括并验证这些附录中确定的所有必需的设计和功能元素,以方便当局验收。注意:QAG 是由制造商制定并由颁发授权/批准书和/或资格证书的国家批准的文件。 4.2 QAG 文件必须包括封面,其中包含公司名称、地址和联系电话,以及训练设备图片、型号名称和编号。下一页应包括目录。以下是适当 QAG 内容的示例: 1. 训练器描述。包括所代表飞机的详细描述以及
耦合飞行动力学、空气力学和气动声学模拟 § 线性化、稳定性、降阶、控制 § 实时空气力学和声学 § 实时交互空气动力学 § 旋翼飞行器(直升机、倾转旋翼机等)§ 扑翼微型飞行器(昆虫、鸟类) 先进飞行控制系统 § 旋翼机飞行控制系统 § 主动降噪飞行控制律 § 主动旋翼振动飞行控制律 感知建模和飞行员提示方法 § 全身触觉反馈 § 多模态飞行员建模 § 自转/舰载着陆提示算法
5.4 降阶模型和基于物理的修正 5-6 5.4.1 方法论 5-6 5.4.1.1 旋翼诱导流入动力学 5-6 5.4.1.2 旋翼间干扰 5-8 5.4.1.3 气动干扰 5-9 5.4.1.4 机身气动 5-9 5.4.1.5 带旋翼超前-滞后的发动机/传动系统动力学 5-9 动力学 5.4.1.6 传感器和斜盘执行器动力学 5-10 5.4.2 应用 5-10 5.4.3 优势和局限性 5-10 5.5 基于物理的模拟的模型参数调整 5-11 5.5.1 方法论 5-11 5.5.1.1 D 级飞行员训练的参数调整 5-11模拟器 5.5.1.2 工程研究的参数调整 5-11 模拟 5.5.2 应用 5-12 5.5.3 优点和局限性 5-12 5.6 关键模拟常数的参数识别 5-12 5.6.1 方法 5-12 5.6.2 应用 5-12 5.6.3 优点和局限性 5-12 5.7 从点 ID 模型和修剪数据进行拼接模拟 5-13 5.7.1 方法 5-13 5.7.2 应用 5-15 5.7.3 优点和局限性 5-15 5.8 参考文献 5-16
8-4.1 导弹硬件替换说明 ..................................8-18 8-4.1.1 替换导弹硬件 ...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8-18 8-4.1.1.1 导弹导引头在环仿真 ....................。。。。。。。。。。。。。。。。。。。。。。。。8-19 8-4.1.1.2 导弹导引头电子在环仿真 ..........................8-19 8-4.1.2 定位导弹硬件 ........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8-20 8-4.1.3 关闭导弹硬件的循环。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8-20
John O’Callaghan,NTSB 摘要 模拟是 NTSB 用于了解事故期间控制飞机运动的物理原理的工具之一。如今,NTSB 的工程桌面模拟程序基于 MATLAB,并包括一个“数学飞行员”,可以计算一组飞行控制和油门输入,以匹配给定的飞行轨迹(例如,由记录的雷达或 GNSS 数据确定)。描述飞机的数学模型必须从制造商处获得或以其他方式估算。此工具已用于重现和分析最近几起通用航空事故的记录飞行路径。但是,NTSB 也会在适当的情况下使用其他类型的模拟。本文将讨论美国国家运输安全委员会使用的三个不同级别的模拟:1) 全飞行飞行员训练模拟器,2) 没有飞行员界面的桌面工程模拟,以及 3) 用作事故数据“媒体播放器”的模拟器视觉效果和驾驶舱。这些不同层次将通过以下案例研究进一步说明:2009 年“哈德逊奇迹”在哈德逊河上迫降事件(US1549)、2001 年美国航空 587 号航班在纽约发生的事故(AA587)、2017 年皮拉图斯 PC-12 空间定向障碍事故以及 2015 年 F-16 战斗机与赛斯纳 150 空中相撞。在这些事件的调查中使用了以下模拟器:● 使用空客 A320 全飞行工程模拟器评估 US1549 飞行员可用的着陆选项,该航班在两台发动机因鸟击而失去推力后在哈德逊河迫降。此外,模拟器还用于评估实现规定的迫降着陆标准的操作可行性。● 将空客 A300 全飞行模拟器所基于的数学空气动力学和推进模型整合到桌面工程模拟器(无飞行员界面)中,以分析 AAL587 飞行数据记录器上记录的飞机运动。这项分析用于确定飞行员飞行控制输入和外部大气扰动(由尾流穿透引起)对飞机运动和载荷的相对重要性。此外,NASA Ames“垂直运动模拟器”(VMS)用于重现 AA587 场景,复制事件期间的视觉场景、驾驶舱控制运动、仪表显示、载荷系数(在限制范围内)和声音(包括驾驶舱语音记录器音频)。VMS 的这种“反向驱动”使调查人员能够评估飞机加速度可能如何影响副驾驶对方向舵踏板和其他飞行控制装置的反应。● 在桌面工程模拟器中使用 Pilatus PC-12 的仿真模型来计算一组飞行控制和油门输入,从而匹配记录的雷达数据。● 最后,对于空中相撞的情况,使用 Microsoft Flight Simulator X 描绘每架飞机驾驶舱的视觉场景,包括从每位飞行员的角度看到的冲突飞机的外观。该动画使调查人员能够确定每架飞机在碰撞前几分钟的可见性,并有助于说明“看见并避免”碰撞避免概念的局限性,以及驾驶舱显示交通信息的好处。
虚拟世界的文化细节(如道路、河流、房屋等)由放置在地形中的物体定义。物体还定义了世界的活跃部分(例如,沿道路行驶的卡车)。物体的行为方式由其类别决定。因此,被赋予“防空炮”类别的物体将始终像防空炮一样向其附近的飞机开火。同样,任何被赋予 NDB(无方向信标)类别的物体都将以指定的频率发射模拟无线电信号。FST 还将您“驾驶”的飞机视为物体:它们的类别将是民用或军用。只有分配给飞机的属性才会定义它的飞行方式、驾驶舱设计和外观。请注意,其中一些属性是在世界编辑器中直接设置的,而其他属性(例如飞机形状)是通过引用由其他 FST 编辑器之一创建的命名文件来设置的(例如,对于形状,这将是形状编辑器)。
第二次世界大战结束不到一年,美国国家航空咨询委员会 (NACA) 将一小群飞行测试人员从兰利纪念航空实验室(后来成为弗吉尼亚州汉普顿的 NASA 兰利研究中心)调到加利福尼亚州莫哈维沙漠的穆洛克大干湖,对 XS-1 高速实验飞机进行飞行测试和航空研究。(XS 代表 eXperimental Sonic,后来缩写为 X-1。)第一批到达并开始工作的人员中有一群由 Roxanah Yancey 领导的“计算机”。这些“计算机”都是年轻女性,她们读取胶片上记录的飞行测试数据,将这些数据输入机械计算器,然后费力地绘制结果图。这是当今即时遥测数据(在地面多通道记录器、X-Y 绘图仪或阴极射线管上显示绘图信息)的繁重前身。多年来,Roxy 和她的“计算机”团队使用计算尺、面积计和计算器执行这些计算。高速、大内存计算机仍是十年或二十年后的事情;书呆子、极客和黑客仍在酝酿之中,计算机科学的大学学位还不存在。
摘要 每天,全球有超过 102,000 个商业客运航班在我们头顶上空飞行。因此,在大规模空中交通的安全保障方面出现了许多问题。如果航空公司使用危机管理,那么任何有关机组人员和飞机为特定飞行任务做准备的活动都会变得更加重要。在飞行过程中,飞行员(飞机的机长)是任何包括人员和货物运输的公司活动的关键人物,这就是为什么必须不断检查、评估和改进飞行员的心理生理能力和飞行性能的原因。在北马其顿首都斯科普里附近发生的一起飞机失事中,航空调查人员发现飞行员训练中存在多起严重失误,导致私人飞机塞斯纳 340 坠毁。调查显示,尽管飞行员获得了仪表气象条件下飞行的认证,但他在空中的行为表明他没有接受过良好的训练。欧美航空当局对各个飞行类别的培训和认证有明确的法律规定,并制定了分类模拟技术,飞行员在获得飞行类别之前会进行练习。飞行模拟器在未来飞行员的目视和仪表飞行条件下的训练中起着至关重要的作用 关键词:航空危机管理、航空公司、飞行训练、飞行模拟器。
具有挑战性的机动,涵盖整个 0 ◦ –360 ◦ 飞行范围。此类 AUV 可受益于海洋生产、环境感知和安全等新用例,通过实现对接、检查或冰下作业的新功能。为了进一步探索它们在这些场景中的能力,必须能够在整个包络线上模拟它们的飞行动力学,其中包括强非线性效应和大攻角下的湍流。利用准确、高效的仿真模型,可以生成新的水上机动并制定控制策略。因此,本文提出了一种实时高效、准确地模拟水上机动的策略。通过结合分析、半经验和数值方法,合成了一个多保真流体动力学数据库,从而捕捉整个包络线上的流体力和力矩。组件构建工作流用于使用从数据库生成的查找表来组装非线性飞行动力学模型。该模拟模型用于执行高级水上机动的实时模拟。模拟结果与文献和实验结果一致,并且模拟器在设计新机动和控制策略时可作为开发工具使用。