IEEE(电气和电子工程师协会)、OGC(开放地理空间联盟)、SISO(模拟互操作性标准组织)、USGIF(美国地理空间情报基金会)、Khronos 集团等主要协会和许多其他组织正在确保模拟社区继续利用开放的行业标准和现代管道方法,除了传统的为模拟需求提供 GIS 源数据的劳动密集型流程之外。这些智能团体还旨在解决数据归因的复杂问题,使所有依赖模拟的行业(国防、汽车、民用航空等)都能利用虚拟环境,该环境不仅是现实世界的完美表现,而且是语义正确且可用于计算机视觉的数据集。
IEEE(电气和电子工程师协会)、OGC(开放地理空间联盟)、SISO(模拟互操作性标准组织)、USGIF(美国地理空间情报基金会)、Khronos 集团等主要协会和许多其他组织正在确保模拟社区继续利用开放的行业标准和现代管道方法,除了传统的劳动密集型流程,即为模拟需求提供 GIS 源数据。这些智能团体还旨在解决数据归因的复杂问题,使所有依赖模拟的行业(国防、汽车、民用航空等)都能利用虚拟环境,它不仅是现实世界的美丽表现,而且是语义正确且可用于计算机视觉的数据集。
摘要:ZHAW 航空中心开发并实施了一种综合了气象和地形对飞机安全范围影响的新型能源管理系统概念。在研究和教学模拟器 (ReDSim) 中构建了相应的飞行模拟环境,以测试驾驶舱显示系统的首次实施。与一组飞行员进行了一系列飞行员在环飞行模拟。通用航空飞机模型 Piper PA-28 经过修改以用于研究。ReDSim 中的环境模型经过修改,包括一个新的临时子系统,用于模拟大气扰动。为了在 ReDsim 中生成高分辨率风场,在概念研究中使用了一种成熟的大涡模拟模型,即并行大涡模拟 (PALM) 框架,重点研究了瑞士萨梅丹附近的一个小山区。为了更真实地表示特定的气象情况,PALM 由从 MeteoSwiss 的 COSMO-1 再分析中提取的边界条件驱动。从 PALM 输出中提取基本变量(风分量、温度和压力),并在插值后输入子系统,以获得任何时刻和任何飞机位置的值。在这个子系统中,还可以基于广泛使用的 Dryden 湍流模型生成统计大气湍流。本文比较了两种产生大气湍流的方法,即结合数值方法和统计模型,并介绍了飞行测试程序,重点强调了湍流的真实性;然后介绍了实验结果,包括通过收集飞行员对湍流特性和湍流/任务组合的反馈而获得的统计评估。
飞行模拟器有不同的用途。由于硬件限制,全尺寸飞行模拟器通常非常昂贵,并且通常取决于飞机类型。因此,人们发现并研究了使用虚拟现实设计飞行模拟器的需求 [1-2]。训练飞行员最安全、最经济的方式是通过飞行模拟器。模拟器可以帮助飞行员体验各种涉及真实飞行的情况,而无需身临其境,从而避免风险。飞行模拟器的重要部分是所谓的控制负载系统。飞行装置实例的数量用于管理飞机的运动、飞行控制和驾驶舱仪表。该系统包括硬件和软件部分。通过数字计算机上的程序员进行的模拟属于软件,结构研究属于硬件。另外两个软件模块支持模拟,其中一个控制驾驶舱在 6 个自由度上的运动,另一个实现驾驶舱控制上的负载再现系统 [3]。飞行模拟器是人在回路的实时模拟系统,采用控制加载系统模拟飞行员操纵真实飞机时的力感应。全数字控制电控加载系统比液压系统具有技术和成本优势,成为大型模拟器的理想选择 [4]。在过去的几十年里,飞行模拟器在飞行员训练中发挥了重要作用,提高了飞行安全性。目前,飞行模拟器的监管资格标准涉及在规定的容差范围内匹配一组规定的飞行测试数据和各种飞机参数。尽管全面的资格测试指南 (QTG) 验证测试表明模拟与飞行测试数据相匹配,但飞行员有时会抱怨模拟器中的某些机动感觉不像飞机 [5]。
具有挑战性的机动,涵盖整个 0 ◦ –360 ◦ 飞行范围。此类 AUV 可受益于海洋生产、环境感知和安全等新用例,通过实现对接、检查或冰下作业的新功能。为了进一步探索它们在这些场景中的能力,必须能够在整个包络线上模拟它们的飞行动力学,其中包括强非线性效应和大攻角下的湍流。利用准确、高效的仿真模型,可以生成新的水上机动并制定控制策略。因此,本文提出了一种实时高效、准确地模拟水上机动的策略。通过结合分析、半经验和数值方法,合成了一个多保真流体动力学数据库,从而捕捉整个包络线上的流体力和力矩。组件构建工作流用于使用从数据库生成的查找表来组装非线性飞行动力学模型。该模拟模型用于执行高级水上机动的实时模拟。模拟结果与文献和实验结果一致,并且模拟器在设计新机动和控制策略时可作为开发工具使用。
5.4 降阶模型和基于物理的修正 5-6 5.4.1 方法论 5-6 5.4.1.1 旋翼诱导流入动力学 5-6 5.4.1.2 旋翼间干扰 5-8 5.4.1.3 气动干扰 5-9 5.4.1.4 机身气动 5-9 5.4.1.5 带旋翼超前-滞后的发动机/传动系统动力学 5-9 动力学 5.4.1.6 传感器和斜盘执行器动力学 5-10 5.4.2 应用 5-10 5.4.3 优势和局限性 5-10 5.5 基于物理的模拟的模型参数调整 5-11 5.5.1 方法论 5-11 5.5.1.1 D 级飞行员训练的参数调整 5-11模拟器 5.5.1.2 工程研究的参数调整 5-11 模拟 5.5.2 应用 5-12 5.5.3 优点和局限性 5-12 5.6 关键模拟常数的参数识别 5-12 5.6.1 方法 5-12 5.6.2 应用 5-12 5.6.3 优点和局限性 5-12 5.7 从点 ID 模型和修剪数据进行拼接模拟 5-13 5.7.1 方法 5-13 5.7.2 应用 5-15 5.7.3 优点和局限性 5-15 5.8 参考文献 5-16
摘要 本文探讨了飞行模拟器的保真度要求,以改进训练并解决与旋翼机飞行中失控 (LOC-I) 相关的问题。为了说明背景,本文介绍了旋翼机事故统计趋势。数据显示,尽管最近采取了安全举措,但 LOC-I 旋翼机事故已被确定为事故率的一个重要且不断增长的因素。20 世纪 90 年代末,固定翼商用飞机界面临着与失控预防和恢复相关的类似情况,并通过协调的国际努力,制定了有针对性的培训计划以降低事故率。本文介绍了从固定翼计划中吸取的经验教训,以强调如何需要改进旋翼机建模和仿真工具,通过更高质量的基于模拟器的培训计划来减少旋翼机事故。本文回顾了相关的飞行模拟器认证标准,重点关注飞行模型保真度和前庭运动提示要求。旋翼机建模和运动提示研究的结果强调了相关的保真度问题,旨在确定进一步活动的领域,以提高用于 LOC-I 预防训练的模拟器标准的保真度。
设备(CS-FSTD(A))或直升机飞行模拟训练设备(CS-FSTD(H))11 详细说明了民用 FSTD 资格的民用法律和监管要求;其他等效的民用认证规范也可用。这些文件分别源自 ICAO Doc 9625 第 1 卷和第 2 卷,提供了根据培训要求确定资格标准的结构化方法。这些规范可帮助 SRO 确定 FSTD 的类别以及可在 FSTD 中进行的资格、评级和培训输出。这些文件为 QTG 的构建和保真度水平提供了指导。然而,该指导基于民用航空系统,旨在执行民用飞行任务,这些系统可能无法完全满足军事用途。因此,设备 QTG 可能需要包括特定的军事任务和能力,例如夜视设备视觉系统,以及调整以适合军事用途的验收标准和公差。
摘要。本文讨论了地面可变稳定性飞行模拟器的开发。该模拟器旨在满足飞行员对飞行品质的训练要求。这一要求来自印度空军一流的飞行测试学校。该模拟器还为研究人员和航空航天学生提供了一个平台,使他们能够了解飞机动力学、研究飞机配置设计、飞行力学、制导和控制以及评估自主导航算法。飞机模型是使用开源数据构建的。该模拟器通过优化技术得到加强,以配置可变的飞机稳定性和控制特性来飞行并评估飞行品质的各个方面。通过一系列针对不同飞机稳定性条件的工程师和飞行员在环模拟来评估该方法。所选任务是经过验证的 CAT A HUD 跟踪任务。该模拟器还可以重新配置以承载增强型战斗机,试飞员团队可以将其作为飞行模型评估其功能完整性。
从驾驶舱内部,您能看出区别吗? Diamond FSTD 精确模仿了 DA40 和 DA42 飞机。仪表板配备了原装 Garmin G1000 NXi 航空电子设备套件和备用仪表。它主要采用原装飞机部件制造,以实现最逼真的驾驶舱环境,包括飞机专用的驾驶舱开关、主飞行控制装置、油门象限和机组人员座椅。 FSTD 具有精确的空气动力学、全面的系统复制、逼真的飞机仪表模拟以及复杂的环境和视觉效果。飞行动态模型通过我们飞行测试部门的飞机参考数据进行验证。没有人比制造商更了解它! Diamond FSTD 是市场上唯一一款基于官方批准的 Diamond 数据包的 DA40/DA42 机队训练设备。 Diamond FSTD 可确保模拟器和飞机之间训练和行为的最佳传输。